Copyright (c) 2025 R.M. Vimalathithan, R. SatheeshKumar, G.Suresh, D.Balaji, S.Balasaraswathy, V.Ponnusamy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of Samarium and Cerium Doped Yttrium Orthoborate Phosphor for near UV LED Application
Corresponding Author(s) : R. Satheesh Kumar
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
Inorganic phosphors are integral to light-emitting diode (LED) technology, enabling the generation of specific colours and white light for a variety of applications. In this study, yttrium orthoborate (YBO3), a chemically stable and thermally robust host lattice, was successfully synthesized via a conventional solid-state reaction method. The synthesized material was systematically characterized using powder X-ray diffraction (XRD) to confirm phase purity and crystalline structure. Photoluminescence (PL) spectroscopy was employed to evaluate the photoluminescence properties of the phosphor. The results suggest that YBO3 is a promising host matrix for rare-earth doping in phosphor-converted LED systems. Lanthanide ions such as samarium (Sm3+) and cerium (Ce3+) were incorporated into the YBO3 host lattice to investigate their influence on the PL properties. PL measurements revealed that the doped phosphors exhibit strong excitation in the near-ultraviolet (UV) region. The resulting emission bands were observed within the visible spectrum. The optimal doping concentrations of Sm3+ and Ce3+ were determined based on the maximum emission intensity. These findings suggest that Sm3+- and Ce3+-doped YBO3 phosphors are promising candidates for near-UV excited white LED applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xiao, Y. Xu, H. Chen, Y. Ding, M. Luo, Y. Han, C. Ma and T. Zheng, Mater. Lett., 360, 135975 (2024); https://doi.org/10.1016/j.matlet.2024.135975.
- A. Jain, P. Seth and S. Aggarwal, Appl. Radiat. Isot., 206, 111222 (2024); https://doi.org/10.1016/j.apradiso.2024.111222
- J. Kong, H. Su, C. Li, S. Cheng, Y. Wang, Y. Ran, Y. Li, Y. Shang, S. Xie and R. Yu, Ceram. Int., 49, 39329 (2023); https://doi.org/10.1016/j.ceramint.2023.09.278
- M. Gao, B. Cao, Z. Liao, L. Qiu, Y. He and B. Dong, Mater. Res. Bull., 172, 112667 (2024); https://doi.org/10.1016/j.materresbull.2023.112667
- L. Reddy, J. Fluoresc., 35, 1205 (2024); https://doi.org/10.1007/s10895-023-03561-0
- B. Fuchs, F. Schröder, G. Heymann, R. Siegel, J. Senker, T. Jüstel and H. Huppertz, Z. Anorg. Allg. Chem., 647, 2035 (2021); https://doi.org/10.1002/zaac.202100229
- S.M. Rafiaei and A. Bahrami, J. Nanostruct. Chem., 7, 367 (2017); https://doi.org/10.1007/s40097-017-0246-1
- Z. Yu, Y. Yang and J. Sun, Nanomaterials, 13, 1013 (2023); https://doi.org/10.3390/nano13061013
- L.T.T. My, N.L. Thai, T.M. Bui, H.-Y. Lee and N.D.Q. Anh, Mater. Sci. Pol., 40, 105 (2022); https://doi.org/10.2478/msp-2022-0050
- S. Kang, Z. Yu, Q. Tian, M. Tai, J. Wang, D. Jin and L. Wang, Electron. Mater. Lett., 18, 540 (2022); https://doi.org/10.1007/s13391-022-00367-3
- T. Malyi, V. Tsiumra, V. Vistovskyy, N. Mitina, H. Stryhanyuk, N. Musat, A. Kondyr, A. Zaichenko and A. Voloshinovskii, Opt. Mater., 124, 112008 (2022); https://doi.org/10.1016/j.optmat.2022.112008
- P. Gupta, M. Sahni and S. Chauhan, Optik, 240, 166810 (2021); https://doi.org/10.1016/j.ijleo.2021.166810
- Q. Zhu, Z. Fan, S. Li and J. Li, J. Asian Ceram. Soc., 8, 542 (2020); https://doi.org/10.1080/21870764.2020.1761084
- R.G. Nair, S. Nigam, V. Sudarsan and R.K. Vatsa, AIP Conf. Proc., 2115, 030618 (2019); https://doi.org/10.1063/1.5113457
- S.J. Dhoble, B. Deva Prasad Raju and V. Singh, Phosphors Synthesis and Applications, Jenny Stanford Publishing (2018).
- E.M. Levin, R.S. Roth and J.B. Martin, Am. Mineral., 46, 1031 (1961); https://doi.org/10/1030/4253522/am
- G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus and J.C. Cousseins, J. Solid State Chem., 128, 261 (1997); https://doi.org/10.1006/jssc.1996.7207
- A. Szczeszak, S. Lis and V. Nagirnyi, J. Rare Earths, 29, 1142 (2011); https://doi.org/10.1016/S1002-0721(10)60613-8
- J.D. Chen, H. Guo, Z.Q. Li, H. Zhang and Y.X. Zhuang, Opt. Mater., 32, 998 (2010); https://doi.org/10.1016/j.optmat.2010.01.040
- H. Hara, S. Takeshita, T. Isobe, Y. Nanai, T. Okuno, T. Sawayama and S. Niikura, J. Alloys Compd., 577, 320 (2013); https://doi.org/10.1016/j.jallcom.2013.05.203
- A. Nohara, S. Takeshita and T. Isobe, RSC Adv., 4, 11219 (2014); https://doi.org/10.1039/c3ra47864e
- K.A. Koparkar, N.S. Bajaj and S.K. Omanwar, Opt. Mater., 39, 74 (2015); https://doi.org/10.1016/j.optmat.2014.11.001
- P. Li, Z. Wang, Z. Yang, Q. Guo and X. Li, Mater. Lett., 63, 751 (2009); https://doi.org/10.1016/j.matlet.2008.12.041
- Z. Xia and D. Chen, J. Am. Ceram. Soc., 93, 1397 (2010); https://doi.org/10.1111/j.1551-2916.2009.03574.x
- Y. Tian, Y. Liu, R. Hua, L. Na and B. Chen, Mater. Res. Bull., 47, 59 (2012); https://doi.org/10.1016/j.materresbull.2011.10.007
- M.J. Treadaway and R.C. Powell, Phys. Rev., B, Solid State, 11, 862 (1975); https://doi.org/10.1103/PhysRevB.11.862
- R. Thomas and V.P.N. Nampoori, Solid State Commun., 73, 803 (1990); https://doi.org/10.1016/0038-1098(90)90134-W
- W.R. Liu, C.H. Huang, C.P. Wu, Y.C. Chiu, Y.T. Yeh and T.M. Chen, J. Mater. Chem., 21, 6869 (2011); https://doi.org/10.1039/c1jm10765h
- G. Dieke, H. Crosswhite and B. Dunn, J. Opt. Soc. Am., 51, 820 (1961); https://doi.org/10.1364/JOSA.51.000820
- G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer: Verlag Berlin Heidelberg (1994).
References
Y. Xiao, Y. Xu, H. Chen, Y. Ding, M. Luo, Y. Han, C. Ma and T. Zheng, Mater. Lett., 360, 135975 (2024); https://doi.org/10.1016/j.matlet.2024.135975.
A. Jain, P. Seth and S. Aggarwal, Appl. Radiat. Isot., 206, 111222 (2024); https://doi.org/10.1016/j.apradiso.2024.111222
J. Kong, H. Su, C. Li, S. Cheng, Y. Wang, Y. Ran, Y. Li, Y. Shang, S. Xie and R. Yu, Ceram. Int., 49, 39329 (2023); https://doi.org/10.1016/j.ceramint.2023.09.278
M. Gao, B. Cao, Z. Liao, L. Qiu, Y. He and B. Dong, Mater. Res. Bull., 172, 112667 (2024); https://doi.org/10.1016/j.materresbull.2023.112667
L. Reddy, J. Fluoresc., 35, 1205 (2024); https://doi.org/10.1007/s10895-023-03561-0
B. Fuchs, F. Schröder, G. Heymann, R. Siegel, J. Senker, T. Jüstel and H. Huppertz, Z. Anorg. Allg. Chem., 647, 2035 (2021); https://doi.org/10.1002/zaac.202100229
S.M. Rafiaei and A. Bahrami, J. Nanostruct. Chem., 7, 367 (2017); https://doi.org/10.1007/s40097-017-0246-1
Z. Yu, Y. Yang and J. Sun, Nanomaterials, 13, 1013 (2023); https://doi.org/10.3390/nano13061013
L.T.T. My, N.L. Thai, T.M. Bui, H.-Y. Lee and N.D.Q. Anh, Mater. Sci. Pol., 40, 105 (2022); https://doi.org/10.2478/msp-2022-0050
S. Kang, Z. Yu, Q. Tian, M. Tai, J. Wang, D. Jin and L. Wang, Electron. Mater. Lett., 18, 540 (2022); https://doi.org/10.1007/s13391-022-00367-3
T. Malyi, V. Tsiumra, V. Vistovskyy, N. Mitina, H. Stryhanyuk, N. Musat, A. Kondyr, A. Zaichenko and A. Voloshinovskii, Opt. Mater., 124, 112008 (2022); https://doi.org/10.1016/j.optmat.2022.112008
P. Gupta, M. Sahni and S. Chauhan, Optik, 240, 166810 (2021); https://doi.org/10.1016/j.ijleo.2021.166810
Q. Zhu, Z. Fan, S. Li and J. Li, J. Asian Ceram. Soc., 8, 542 (2020); https://doi.org/10.1080/21870764.2020.1761084
R.G. Nair, S. Nigam, V. Sudarsan and R.K. Vatsa, AIP Conf. Proc., 2115, 030618 (2019); https://doi.org/10.1063/1.5113457
S.J. Dhoble, B. Deva Prasad Raju and V. Singh, Phosphors Synthesis and Applications, Jenny Stanford Publishing (2018).
E.M. Levin, R.S. Roth and J.B. Martin, Am. Mineral., 46, 1031 (1961); https://doi.org/10/1030/4253522/am
G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus and J.C. Cousseins, J. Solid State Chem., 128, 261 (1997); https://doi.org/10.1006/jssc.1996.7207
A. Szczeszak, S. Lis and V. Nagirnyi, J. Rare Earths, 29, 1142 (2011); https://doi.org/10.1016/S1002-0721(10)60613-8
J.D. Chen, H. Guo, Z.Q. Li, H. Zhang and Y.X. Zhuang, Opt. Mater., 32, 998 (2010); https://doi.org/10.1016/j.optmat.2010.01.040
H. Hara, S. Takeshita, T. Isobe, Y. Nanai, T. Okuno, T. Sawayama and S. Niikura, J. Alloys Compd., 577, 320 (2013); https://doi.org/10.1016/j.jallcom.2013.05.203
A. Nohara, S. Takeshita and T. Isobe, RSC Adv., 4, 11219 (2014); https://doi.org/10.1039/c3ra47864e
K.A. Koparkar, N.S. Bajaj and S.K. Omanwar, Opt. Mater., 39, 74 (2015); https://doi.org/10.1016/j.optmat.2014.11.001
P. Li, Z. Wang, Z. Yang, Q. Guo and X. Li, Mater. Lett., 63, 751 (2009); https://doi.org/10.1016/j.matlet.2008.12.041
Z. Xia and D. Chen, J. Am. Ceram. Soc., 93, 1397 (2010); https://doi.org/10.1111/j.1551-2916.2009.03574.x
Y. Tian, Y. Liu, R. Hua, L. Na and B. Chen, Mater. Res. Bull., 47, 59 (2012); https://doi.org/10.1016/j.materresbull.2011.10.007
M.J. Treadaway and R.C. Powell, Phys. Rev., B, Solid State, 11, 862 (1975); https://doi.org/10.1103/PhysRevB.11.862
R. Thomas and V.P.N. Nampoori, Solid State Commun., 73, 803 (1990); https://doi.org/10.1016/0038-1098(90)90134-W
W.R. Liu, C.H. Huang, C.P. Wu, Y.C. Chiu, Y.T. Yeh and T.M. Chen, J. Mater. Chem., 21, 6869 (2011); https://doi.org/10.1039/c1jm10765h
G. Dieke, H. Crosswhite and B. Dunn, J. Opt. Soc. Am., 51, 820 (1961); https://doi.org/10.1364/JOSA.51.000820
G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer: Verlag Berlin Heidelberg (1994).