Copyright (c) 2025 Mohd Farhan, Anil Kumar Singh, Dr. Gandharve Kumar Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrothermal Synthesis of Z-Scheme ZnWO4/BiOBr Nanocomposite for Photocatalytic Degradation of Rhodamine B Dye
Corresponding Author(s) : Gandharve Kumar
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
The ZnWO4/BiOBr heterostructured photocatalyst was prepared using a hydrothermal synthesis method and systematically characterized using advanced analytical techniques. Its photocatalytic performance was evaluated under simulated sunlight, demonstrating efficient degradation of rhodamine B (RhB) dye. The best performing 10 wt.% ZnWO4/BiOBr photocatalysts remove about 99% RhB (10 mg/L), whose photocatalytic degradation rate was 17-times and 5-times superior than ZnWO4 and BiOBr parent materials, respectively. The enhanced photocatalytic efficiency of the 10 wt.% ZnWO4/BiOBr nanocomposite under visible light is attributed to its favourable band alignment resembling a Z-scheme mechanism, which facilitates effective charge separation, suppresses electron-hole recombination and promotes the in situ generation of reactive oxygen species.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.J.F. Calvete, G. Piccirillo, C.S. Vinagreiro and M.M. Pereira, Coord. Chem. Rev., 395, 63 (2019); https://doi.org/10.1016/j.ccr.2019.05.004
- R. Daghrir and P. Drogui, Environ. Chem. Lett., 11, 209 (2013); https://doi.org/10.1007/s10311-013-0404-8
- J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind and D.G. Larsson, Environ. Toxicol. Chem., 28, 2522 (2009); https://doi.org/10.1897/09-073.1
- S. Manzetti and R. Ghisi, Mar. Pollut. Bull., 79, 7 (2014); https://doi.org/10.1016/j.marpolbul.2014.01.005
- R. Zhang, J. Tang, J. Li, Z. Cheng, C. Chaemfa, D. Liu, Q. Zheng, M. Song, C. Luo and G. Zhang, Sci. Total Environ., 450–451, 197 (2013); https://doi.org/10.1016/j.scitotenv.2013.02.024
- C. Adams, Y. Wang, K. Loftin and M. Meyer, J. Environ. Eng., 128, 253 (2002); https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
- N.A. Khan, S. Ahmed, I.H. Farooqi, I. Ali, V. Vambol, F. Changani, M. Yousefi, S. Vambol, S.U. Khan and A.H. Khan, Trends Analyt. Chem., 129, 115921 (2020); https://doi.org/10.1016/j.trac.2020.115921
- Y. Wang, K. Ding, R. Xu, D. Yu, W. Wang, P. Gao and B. Liu, J. Clean. Prod., 247, 119108 (2020); https://doi.org/10.1016/j.jclepro.2019.119108
- Y. Wang, D. Yu, W. Wang, P. Gao, S. Zhong, L. Zhang, Q. Zhao and B. Liu, Sep. Purif. Technol., 239, 116562 (2020); https://doi.org/10.1016/j.seppur.2020.116562
- R. Yang, Z. Zhu, C. Hu, S. Zhong, L. Zhang, B. Liu and W. Wang, Chem. Eng. J., 390, 124522 (2020); https://doi.org/10.1016/j.cej.2020.124522
- L. Zhang, Y. Li, Q. Li, J. Fan, S. A. C. Carabineiro and K. Lv, Chem. Eng. J., 419, 129484 (2021); https://doi.org/10.1016/j.cej.2021.129484
- M. Hojamberdiev, K.I. Katsumata, K. Morita, S.A. Bilmes, N. Matsushita and K. Okada, Appl. Catal. A Gen., 457, 12 (2013); https://doi.org/10.1016/j.apcata.2013.03.014
- F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang and G. Zeng, ACS Appl. Mater. Interfaces, 8, 32887 (2016); https://doi.org/10.1021/acsami.6b12278
- G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He and J. Lu, Appl. Catal. B, 250, 313 (2019); https://doi.org/10.1016/j.apcatb.2019.03.055
- X. Gao, G. Huang, H. Gao, C. Pan, H. Wang, J. Yan, Y. Liu, H. Qiu, N. Ma and J. Gao, J. Alloys Compd., 674, 98 (2016); https://doi.org/10.1016/j.jallcom.2016.03.031
- M. Farhan, A.K. Singh and G. Kumar, Rasayan J. Chem., 18, 913 (2025); https://doi.org/10.31788/RJC.2025.1829245
- J. Li, H. Yuan, W. Zhang, B. Jin, Q. Feng, J. Huang and Z. Jiao, Carbon Energy, 4, 294 (2022); https://doi.org/10.1002/cey2.179
- A.P. Chowdhury and B.H. Shambharkar, Chemical Eng. J. Adv., 4, 100040 (2020); https://doi.org/10.1016/j.ceja.2020.100040
- Y. Zhang, J. Di, W. Tong, X. Chen, J. Zhao, P. Ding, S. Yin, J. Xia and H. Li, Res. Chem. Intermed., 45, 437 (2019); https://doi.org/10.1007/s11164-018-3610-y
- J. Mao, B. Hong, J. Wei, J. Xu, Y. Han, H. Jin, D. Jin, X. Peng, J. Li, Y. Yang, J. Gong, H. Ge and X. Wang, ChemistrySelect, 4, 13716 (2019); https://doi.org/10.1002/slct.201903944
- Z. Qiang, X. Liu, F. Li, T. Li, M. Zhang, H. Singh, M. Huttula and W. Cao, Chem. Eng. J., 403, 126327 (2021); https://doi.org/10.1016/j.cej.2020.126327
- J. Sun, C.H. Shen, J. Guo, H. Guo, Y.F. Yin, X.J. Xu, Z.H. Fei, Z.T. Liu and X.J. Wen, J. Colloid Interface Sci., 588, 19 (2021); https://doi.org/10.1016/j.jcis.2020.12.043
- F. Qiu, W. Li, F. Wang, H. Li, X. Liu and J. Sun, J. Colloid Interface Sci., 493, 1 (2017); https://doi.org/10.1016/j.jcis.2016.12.066
- J. Hu, X. Li, X. Wang, Q. Li and F. Wang, Dalton Trans., 48, 8937 (2019); https://doi.org/10.1039/C9DT01184F
- P. Raizada, P. Thakur, A. Sudhaik, P. Singh, V.K. Thakur and A. Hosseini-Bandegharaei, Arab. J. Chem., 13, 4538 (2020); https://doi.org/10.1016/j.arabjc.2019.10.001
- X. Shi, L. Wang, A.A. Zuh, Y. Jia, F. Ding, H. Cheng and Q. Wang, J. Alloys Compd., 903, 163889 (2022); https://doi.org/10.1016/j.jallcom.2022.163889
- G. Kumar, J. Inorg. Organomet. Polym. Mater., 33, 2710 (2023); https://doi.org/10.1007/s10904-023-02711-y
- W.H. Koppenol, D.M. Stanbury and P.L. Bounds, Free Radic. Biol. Med., 49, 317 (2010); https://doi.org/10.1016/j.freeradbiomed.2010.04.011
- M. Kowalkińska, P. Głuchowski, T. Swebocki, T. Ossowski, A. Ostrowski, W. Bednarski, J. Karczewski and A. Zielińska-Jurek, J. Phys. Chem. C, 125, 25497 (2021); https://doi.org/10.1021/acs.jpcc.1c06481
References
M.J.F. Calvete, G. Piccirillo, C.S. Vinagreiro and M.M. Pereira, Coord. Chem. Rev., 395, 63 (2019); https://doi.org/10.1016/j.ccr.2019.05.004
R. Daghrir and P. Drogui, Environ. Chem. Lett., 11, 209 (2013); https://doi.org/10.1007/s10311-013-0404-8
J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind and D.G. Larsson, Environ. Toxicol. Chem., 28, 2522 (2009); https://doi.org/10.1897/09-073.1
S. Manzetti and R. Ghisi, Mar. Pollut. Bull., 79, 7 (2014); https://doi.org/10.1016/j.marpolbul.2014.01.005
R. Zhang, J. Tang, J. Li, Z. Cheng, C. Chaemfa, D. Liu, Q. Zheng, M. Song, C. Luo and G. Zhang, Sci. Total Environ., 450–451, 197 (2013); https://doi.org/10.1016/j.scitotenv.2013.02.024
C. Adams, Y. Wang, K. Loftin and M. Meyer, J. Environ. Eng., 128, 253 (2002); https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
N.A. Khan, S. Ahmed, I.H. Farooqi, I. Ali, V. Vambol, F. Changani, M. Yousefi, S. Vambol, S.U. Khan and A.H. Khan, Trends Analyt. Chem., 129, 115921 (2020); https://doi.org/10.1016/j.trac.2020.115921
Y. Wang, K. Ding, R. Xu, D. Yu, W. Wang, P. Gao and B. Liu, J. Clean. Prod., 247, 119108 (2020); https://doi.org/10.1016/j.jclepro.2019.119108
Y. Wang, D. Yu, W. Wang, P. Gao, S. Zhong, L. Zhang, Q. Zhao and B. Liu, Sep. Purif. Technol., 239, 116562 (2020); https://doi.org/10.1016/j.seppur.2020.116562
R. Yang, Z. Zhu, C. Hu, S. Zhong, L. Zhang, B. Liu and W. Wang, Chem. Eng. J., 390, 124522 (2020); https://doi.org/10.1016/j.cej.2020.124522
L. Zhang, Y. Li, Q. Li, J. Fan, S. A. C. Carabineiro and K. Lv, Chem. Eng. J., 419, 129484 (2021); https://doi.org/10.1016/j.cej.2021.129484
M. Hojamberdiev, K.I. Katsumata, K. Morita, S.A. Bilmes, N. Matsushita and K. Okada, Appl. Catal. A Gen., 457, 12 (2013); https://doi.org/10.1016/j.apcata.2013.03.014
F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang and G. Zeng, ACS Appl. Mater. Interfaces, 8, 32887 (2016); https://doi.org/10.1021/acsami.6b12278
G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He and J. Lu, Appl. Catal. B, 250, 313 (2019); https://doi.org/10.1016/j.apcatb.2019.03.055
X. Gao, G. Huang, H. Gao, C. Pan, H. Wang, J. Yan, Y. Liu, H. Qiu, N. Ma and J. Gao, J. Alloys Compd., 674, 98 (2016); https://doi.org/10.1016/j.jallcom.2016.03.031
M. Farhan, A.K. Singh and G. Kumar, Rasayan J. Chem., 18, 913 (2025); https://doi.org/10.31788/RJC.2025.1829245
J. Li, H. Yuan, W. Zhang, B. Jin, Q. Feng, J. Huang and Z. Jiao, Carbon Energy, 4, 294 (2022); https://doi.org/10.1002/cey2.179
A.P. Chowdhury and B.H. Shambharkar, Chemical Eng. J. Adv., 4, 100040 (2020); https://doi.org/10.1016/j.ceja.2020.100040
Y. Zhang, J. Di, W. Tong, X. Chen, J. Zhao, P. Ding, S. Yin, J. Xia and H. Li, Res. Chem. Intermed., 45, 437 (2019); https://doi.org/10.1007/s11164-018-3610-y
J. Mao, B. Hong, J. Wei, J. Xu, Y. Han, H. Jin, D. Jin, X. Peng, J. Li, Y. Yang, J. Gong, H. Ge and X. Wang, ChemistrySelect, 4, 13716 (2019); https://doi.org/10.1002/slct.201903944
Z. Qiang, X. Liu, F. Li, T. Li, M. Zhang, H. Singh, M. Huttula and W. Cao, Chem. Eng. J., 403, 126327 (2021); https://doi.org/10.1016/j.cej.2020.126327
J. Sun, C.H. Shen, J. Guo, H. Guo, Y.F. Yin, X.J. Xu, Z.H. Fei, Z.T. Liu and X.J. Wen, J. Colloid Interface Sci., 588, 19 (2021); https://doi.org/10.1016/j.jcis.2020.12.043
F. Qiu, W. Li, F. Wang, H. Li, X. Liu and J. Sun, J. Colloid Interface Sci., 493, 1 (2017); https://doi.org/10.1016/j.jcis.2016.12.066
J. Hu, X. Li, X. Wang, Q. Li and F. Wang, Dalton Trans., 48, 8937 (2019); https://doi.org/10.1039/C9DT01184F
P. Raizada, P. Thakur, A. Sudhaik, P. Singh, V.K. Thakur and A. Hosseini-Bandegharaei, Arab. J. Chem., 13, 4538 (2020); https://doi.org/10.1016/j.arabjc.2019.10.001
X. Shi, L. Wang, A.A. Zuh, Y. Jia, F. Ding, H. Cheng and Q. Wang, J. Alloys Compd., 903, 163889 (2022); https://doi.org/10.1016/j.jallcom.2022.163889
G. Kumar, J. Inorg. Organomet. Polym. Mater., 33, 2710 (2023); https://doi.org/10.1007/s10904-023-02711-y
W.H. Koppenol, D.M. Stanbury and P.L. Bounds, Free Radic. Biol. Med., 49, 317 (2010); https://doi.org/10.1016/j.freeradbiomed.2010.04.011
M. Kowalkińska, P. Głuchowski, T. Swebocki, T. Ossowski, A. Ostrowski, W. Bednarski, J. Karczewski and A. Zielińska-Jurek, J. Phys. Chem. C, 125, 25497 (2021); https://doi.org/10.1021/acs.jpcc.1c06481