Copyright (c) 2025 Kumari Punjima, Sudha Yadava, Anand Ratnam, Nand Kishor Gour, Pankaj Kumar Chaurasia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Manganese(III) Complexes of Porphyrin-based Ligand: Synthesis, DFT Study and Catalytic Application
Corresponding Author(s) : Pankaj Kumar Chaurasia
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
Four new Mn(III) porphyrin complexes with 1,2-diaminoethane were synthesized, with the general formula [MnIII(TEHPP)X(dae)], where TEHPP is 5,10,15,20-tetra(3-ethoxy-4-hydroxyphenyl)porphine, X represents Cl–, Br–, NCS– or N3– and ‘dae’ is 1,2-diaminoethane. These complexes were characterized with ultraviolet-visible (UV-visible) spectroscopy, Fourier transform-infrared (FT-IR), elemental analyses, magnetic susceptibility measurements and conductivity measurements. The synthesized novel Mn(III) porphyrins exhibit catalytic activity in the oxidation of aromatic alcohols to aldehydes. The catalytic performance of these complexes was evaluated for the oxidation of benzyl alcohol derivative to corresponding aldehyde at room temperature (30 ºC) using oxidants such as NaIO4, H2O2 and NaOCl. Density functional theory (DFT) calculations were also conducted to optimize the complex structures and HOMO–LUMO energies were determined using NBO analysis at the same theoretical level.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard, and C. Stern, Chem. Rev., 109, 1659 (2009); https://doi.org/10.1021/cr800247a
- E. Suljoti, R. Garcia-Diez, S.I. Bokarev, K.M. Lange, R. Schoch, B. Dierker, M. Dantz, K. Yamamoto, N. Engel, K. Atak, O. Kühn, M. Bauer, J.-E. Rubensson and E.F. Aziz, Angew. Chem. Int. Ed., 52, 9841 (2013); https://doi.org/10.1002/anie.201303310
- A.N. Kiselev, S.A. Syrbu, N.S. Lebedeva and Y.A. Gubarev, Inorganics, 10, 63 (2022); https://doi.org/10.3390/inorganics10050063
- T. Nemeth, A. Pallier, C. Çelik, Z. Garda, N. Yoshizawa-Sugataet, H. Masai, É. Tóth and Y. Yamakoshi, Chem. Biomed. Imaging, 3, 5 (2025); https://doi.org/10.1021/cbmi.4c00046
- R. Soury, A. Elamri, M. El Oudi, K.M. Alenezi, M. Jabli, A. Al Otaibi, A.A. Alanazi and A.E.A.E. Albadri, Molecules, 29, 5217 (2024); https://doi.org/10.3390/molecules29215217
- B.N. Cabral, J.L.S. Milani, A.M. Meireles, D.C.D.S. Martins, S.L.D.S. Ribeiro, J.S. Rebouças, C.L. Donnici and R.P.D. Chagas, New J. Chem., 45, 1934 (2021); https://doi.org/10.1039/D0NJ05280A
- P.K. Chaurasia, S.L. Bharati, S. Singh and S. Yadava, Mini-Rev. Org. Chem., 21, 471 (2024); http://dx.doi.org/10.2174/1570193X19666220513141040
- L.J. Boucher, Coord. Chem. Rev., 7, 289 (1972); https://doi.org/10.1016/S0010-8545(00)80024-7
- K. Oyaizu, A. Haryono, H. Yonemaru and E. Tsuchida, J. Chem. Soc., Faraday Trans., 94, 3393 (1998); https://doi.org/10.1039/a805535a
- J.A.A.W. Elemans, E.J.A. Bijsterveld, A.E. Rowan and R.J.M. Nolte, Eur. J. Org. Chem., 2007, 751 (2007); https://doi.org/10.1002/ejoc.200600648
- G. Pratviel, M. Pitiee, J. Bernadou and B. Meunier, Nucleic Acids Res., 19, 6283 (1991); https://doi.org/10.1093/nar/19.22.6283
- J. Bernadou, G. Pratviel, F. Bennis, M. Girardet and B. Meunier, Biochemistry, 28, 7268 (1989); https://doi.org/10.1021/bi00444a019
- M. Pitie, J. Bernadou and B. Meunier, J. Am. Chem. Soc., 117, 2935 (1995); https://doi.org/10.1021/ja00115a032
- B. Meunier, Chem. Rev., 92, 1411 (1992); https://doi.org/10.1021/cr00014a008
- R. Golnak, J. Xiao, M. Pohl, C. Schwanke, A. Neubauer, K.M. Lange, K. Atak and E.F. Aziz, Inorg. Chem., 55, 22 (2016); https://doi.org/10.1021/acs.inorgchem.5b01585
- N. Anand and S. Yadava, J. Coord. Chem., 71, 3090 (2018); https://doi.org/10.1080/00958972.2018.1511779
- S. Yadava and S.L. Bharati, J. Coord. Chem., 64, 3950 (2011); https://doi.org/10.1080/00958972.2011.632412
- S.L. Bharati and S. Yadava, J. Coord. Chem., 65, 3492 (2012); https://doi.org/10.1080/00958972.2012.718763
- S.L. Bharati, P.K. Chaurasia and S. Yadava, Russ. J. Inorg. Chem., 61, 232 (2016); https://doi.org/10.1134/S0036023616020212
- S.L. Bharati, C. Sarma, P.J. Hazarika, P.K. Chaurasia, N. Anand and S. Yadava, Russ. J. Inorg. Chem., 64, 335 (2019); https://doi.org/10.1134/S0036023619030045
- R.J. Errington, Advanced Practical Inorganic and Metalloorganic Chemistry, Chapman and Hall, London, edn. 1 (1997).
- W.L.F. Armarego and D.D. Perrin, Purification of Laboratory Chemicals, Butterworth-Heinemann, Oxford, edn 4 (1997).
- B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith and A.R. Tatchell, Vogel’s Text Book of Practical Organic Chemistry, 4th Edn., ELBS, London (1984).
- A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, J. Org. Chem., 32, 476 (1967); https://doi.org/10.1021/jo01288a053
- E.B. Fleischer, J.M. Palmer, T.S. Srivastava and A. Chatterjee, J. Am. Chem. Soc., 93, 3162 (1971); https://doi.org/10.1021/ja00742a012
- B.R. Stults, V.W. Day, E.L. Tasset and R.S. Marianelli, Inorg. Nucl. Chem. Lett., 9, 1259 (1973); https://doi.org/10.1016/0020-1650(73)80007-8
- B.R. Stults, R.S. Marianelli and V.W. Day, Inorg. Chem., 14, 722 (1975); https://doi.org/10.1021/ic50146a004
- M. Gouterman, J. Mol. Spectrosc., 6, 138 (1961); https://doi.org/10.1016/0022-2852(61)90236-3
- H.L. Anderson, Chem. Commun., 23, 2323 (1999); https://doi.org/10.1039/a904209a
- L.J. Boucher, J. Am. Chem. Soc., 90, 6640 (1968); https://doi.org/10.1021/ja01026a014
- J.E. Huheey, E.A. Keiter and R.L. Keiter, Inorganic Chemistry, Principles of Structure and Reactivity, Pearson Education: Singapore edn 4, p. 445 (2005).
- J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall of India Private Limited, New Delhi (1969).
- R.J.H. Clark and C.S. Williams, Spectrochim. Acta, 22, 1081 (1966).
- G. Wilkinson Sir, R.D. Gillard and J.A. McCleverty, Comprehensive Coordination Chemistry, Pergamon Press: Oxford, vol. 2, p. 816 (1987).
- T.N. Lomova and B.D. Berezin, Russ. J. Coord. Chem., 27, 85 (2001); https://doi.org/10.1023/A:1009523115380
- B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Chichester, West Sussex, England, p. 104, (2004).
- I. Gamo, Bull. Chem. Soc. Jpn., 34, 760 (1961); https://doi.org/10.1246/bcsj.34.760
- A.D. Allen and C.V. Senoff, Can. J. Chem., 43, 888 (1965); https://doi.org/10.1139/v65-115
- L.J. de Jongh and A.R. Miedema, Adv. Phys., 23, 1 (1974); https://doi.org/10.1080/00018739700101558
- D.V. Behere and S. Mitra, Inorg. Chem., 19, 992 (1980); https://doi.org/10.1021/ic50206a039
- A. Panja, N. Shaikh, P. Vojtíšek, S. Gao and P. Banerjee, New J. Chem., 26, 1025 (2002); https://doi.org/10.1039/B200384H
- J.F. Kirner and W.R. Scheidt, Inorg. Chem., 14, 2081 (1975); https://doi.org/10.1021/ic50151a013
- V.W. Day, B. Ray Stults, E.L. Tasset, R.S. Marianelli and L.J. Boucher, Inorg. Nucl. Chem. Lett., 11, 505 (1975); https://doi.org/10.1016/0020-1650(75)80025-0
- Y. Zhao and D.G. Truhlar, J. Chem. Phys., 125, 194101 (2006); https://doi.org/10.1063/1.2370993
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F.M. Ogliaro, J. Bearpark, J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A.P. Salvador, S. Dapprich, J.J. Dannenberg, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz and J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., CT Wallingford (2009).
- C. Sarma, P.K. Chaurasia and S.L. Bharati, Russ. J. Gen. Chem., 89, 517 (2019); https://doi.org/10.1134/S1070363219030253
References
I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard, and C. Stern, Chem. Rev., 109, 1659 (2009); https://doi.org/10.1021/cr800247a
E. Suljoti, R. Garcia-Diez, S.I. Bokarev, K.M. Lange, R. Schoch, B. Dierker, M. Dantz, K. Yamamoto, N. Engel, K. Atak, O. Kühn, M. Bauer, J.-E. Rubensson and E.F. Aziz, Angew. Chem. Int. Ed., 52, 9841 (2013); https://doi.org/10.1002/anie.201303310
A.N. Kiselev, S.A. Syrbu, N.S. Lebedeva and Y.A. Gubarev, Inorganics, 10, 63 (2022); https://doi.org/10.3390/inorganics10050063
T. Nemeth, A. Pallier, C. Çelik, Z. Garda, N. Yoshizawa-Sugataet, H. Masai, É. Tóth and Y. Yamakoshi, Chem. Biomed. Imaging, 3, 5 (2025); https://doi.org/10.1021/cbmi.4c00046
R. Soury, A. Elamri, M. El Oudi, K.M. Alenezi, M. Jabli, A. Al Otaibi, A.A. Alanazi and A.E.A.E. Albadri, Molecules, 29, 5217 (2024); https://doi.org/10.3390/molecules29215217
B.N. Cabral, J.L.S. Milani, A.M. Meireles, D.C.D.S. Martins, S.L.D.S. Ribeiro, J.S. Rebouças, C.L. Donnici and R.P.D. Chagas, New J. Chem., 45, 1934 (2021); https://doi.org/10.1039/D0NJ05280A
P.K. Chaurasia, S.L. Bharati, S. Singh and S. Yadava, Mini-Rev. Org. Chem., 21, 471 (2024); http://dx.doi.org/10.2174/1570193X19666220513141040
L.J. Boucher, Coord. Chem. Rev., 7, 289 (1972); https://doi.org/10.1016/S0010-8545(00)80024-7
K. Oyaizu, A. Haryono, H. Yonemaru and E. Tsuchida, J. Chem. Soc., Faraday Trans., 94, 3393 (1998); https://doi.org/10.1039/a805535a
J.A.A.W. Elemans, E.J.A. Bijsterveld, A.E. Rowan and R.J.M. Nolte, Eur. J. Org. Chem., 2007, 751 (2007); https://doi.org/10.1002/ejoc.200600648
G. Pratviel, M. Pitiee, J. Bernadou and B. Meunier, Nucleic Acids Res., 19, 6283 (1991); https://doi.org/10.1093/nar/19.22.6283
J. Bernadou, G. Pratviel, F. Bennis, M. Girardet and B. Meunier, Biochemistry, 28, 7268 (1989); https://doi.org/10.1021/bi00444a019
M. Pitie, J. Bernadou and B. Meunier, J. Am. Chem. Soc., 117, 2935 (1995); https://doi.org/10.1021/ja00115a032
B. Meunier, Chem. Rev., 92, 1411 (1992); https://doi.org/10.1021/cr00014a008
R. Golnak, J. Xiao, M. Pohl, C. Schwanke, A. Neubauer, K.M. Lange, K. Atak and E.F. Aziz, Inorg. Chem., 55, 22 (2016); https://doi.org/10.1021/acs.inorgchem.5b01585
N. Anand and S. Yadava, J. Coord. Chem., 71, 3090 (2018); https://doi.org/10.1080/00958972.2018.1511779
S. Yadava and S.L. Bharati, J. Coord. Chem., 64, 3950 (2011); https://doi.org/10.1080/00958972.2011.632412
S.L. Bharati and S. Yadava, J. Coord. Chem., 65, 3492 (2012); https://doi.org/10.1080/00958972.2012.718763
S.L. Bharati, P.K. Chaurasia and S. Yadava, Russ. J. Inorg. Chem., 61, 232 (2016); https://doi.org/10.1134/S0036023616020212
S.L. Bharati, C. Sarma, P.J. Hazarika, P.K. Chaurasia, N. Anand and S. Yadava, Russ. J. Inorg. Chem., 64, 335 (2019); https://doi.org/10.1134/S0036023619030045
R.J. Errington, Advanced Practical Inorganic and Metalloorganic Chemistry, Chapman and Hall, London, edn. 1 (1997).
W.L.F. Armarego and D.D. Perrin, Purification of Laboratory Chemicals, Butterworth-Heinemann, Oxford, edn 4 (1997).
B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith and A.R. Tatchell, Vogel’s Text Book of Practical Organic Chemistry, 4th Edn., ELBS, London (1984).
A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, J. Org. Chem., 32, 476 (1967); https://doi.org/10.1021/jo01288a053
E.B. Fleischer, J.M. Palmer, T.S. Srivastava and A. Chatterjee, J. Am. Chem. Soc., 93, 3162 (1971); https://doi.org/10.1021/ja00742a012
B.R. Stults, V.W. Day, E.L. Tasset and R.S. Marianelli, Inorg. Nucl. Chem. Lett., 9, 1259 (1973); https://doi.org/10.1016/0020-1650(73)80007-8
B.R. Stults, R.S. Marianelli and V.W. Day, Inorg. Chem., 14, 722 (1975); https://doi.org/10.1021/ic50146a004
M. Gouterman, J. Mol. Spectrosc., 6, 138 (1961); https://doi.org/10.1016/0022-2852(61)90236-3
H.L. Anderson, Chem. Commun., 23, 2323 (1999); https://doi.org/10.1039/a904209a
L.J. Boucher, J. Am. Chem. Soc., 90, 6640 (1968); https://doi.org/10.1021/ja01026a014
J.E. Huheey, E.A. Keiter and R.L. Keiter, Inorganic Chemistry, Principles of Structure and Reactivity, Pearson Education: Singapore edn 4, p. 445 (2005).
J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall of India Private Limited, New Delhi (1969).
R.J.H. Clark and C.S. Williams, Spectrochim. Acta, 22, 1081 (1966).
G. Wilkinson Sir, R.D. Gillard and J.A. McCleverty, Comprehensive Coordination Chemistry, Pergamon Press: Oxford, vol. 2, p. 816 (1987).
T.N. Lomova and B.D. Berezin, Russ. J. Coord. Chem., 27, 85 (2001); https://doi.org/10.1023/A:1009523115380
B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Chichester, West Sussex, England, p. 104, (2004).
I. Gamo, Bull. Chem. Soc. Jpn., 34, 760 (1961); https://doi.org/10.1246/bcsj.34.760
A.D. Allen and C.V. Senoff, Can. J. Chem., 43, 888 (1965); https://doi.org/10.1139/v65-115
L.J. de Jongh and A.R. Miedema, Adv. Phys., 23, 1 (1974); https://doi.org/10.1080/00018739700101558
D.V. Behere and S. Mitra, Inorg. Chem., 19, 992 (1980); https://doi.org/10.1021/ic50206a039
A. Panja, N. Shaikh, P. Vojtíšek, S. Gao and P. Banerjee, New J. Chem., 26, 1025 (2002); https://doi.org/10.1039/B200384H
J.F. Kirner and W.R. Scheidt, Inorg. Chem., 14, 2081 (1975); https://doi.org/10.1021/ic50151a013
V.W. Day, B. Ray Stults, E.L. Tasset, R.S. Marianelli and L.J. Boucher, Inorg. Nucl. Chem. Lett., 11, 505 (1975); https://doi.org/10.1016/0020-1650(75)80025-0
Y. Zhao and D.G. Truhlar, J. Chem. Phys., 125, 194101 (2006); https://doi.org/10.1063/1.2370993
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F.M. Ogliaro, J. Bearpark, J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A.P. Salvador, S. Dapprich, J.J. Dannenberg, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz and J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., CT Wallingford (2009).
C. Sarma, P.K. Chaurasia and S.L. Bharati, Russ. J. Gen. Chem., 89, 517 (2019); https://doi.org/10.1134/S1070363219030253