Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrothermal Conversion of Rice Husk on Solid Acid Catalysts
Corresponding Author(s) : Zhiping Le
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
Liquefaction of rice husk using hydrothermal treatment with solid catalyst was investigated. Study shows that all solid catalysts tested exhibited high catalytic activities. The solid acid catalysts have higher activity than other catalysts. The catalysts were characterized by FT-IR and NH3-TPD. The result of FT-IR shows that the Cl– of catalyst is in the form of ClO4–; therefore, ClO4–-Fe2O3-La2O3/ZrO2-SiO2 can be made into solid super acid catalysts. The result of NH3-TPD indicates that ClO4–-Fe2O3-La2O3/ZrO2-SiO2 catalyst has two kinds of surface acidity sites. GC-MS analysis shows that the major conversion products were phenol, 3-methyl-1, 2-cyclopentanedione, 6-methoxy-8-nitro-4-trifluoromethylquinoline and 2-methoxy-phenol. The liquefaction characteristics were found to be influenced by the reaction conditions including temperature, holding time, catalyst dosage and water to rich husk (W/R) ratio.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.M. Sani, W.M.A.W. Daud and A.R. Abdul Aziz, Appl. Catal. A, 470, 140 (2014); doi:10.1016/j.apcata.2013.10.052.
- K. Gaska and A. Wandrasz, Waste Manage., 28, 973 (2008); doi:10.1016/j.wasman.2007.03.025.
- M.E. Bildirici and F. Özaksoy, J. Renew. Sustain. Energy, 5, 023141 (2013); doi:10.1063/1.4802944.
- A. Demirbas, Energy Convers. Manage., 50, 2239 (2009); doi:10.1016/j.enconman.2009.05.010.
- S. Bezergianni and A. Dimitriadis, Renew. Sustain. Energy Rev., 21, 110 (2013); doi:10.1016/j.rser.2012.12.042.
- J. Chheda, G. Huber and J. Dumesic, Angew. Chem. Int. Ed., 46, 7164 (2007); doi:10.1002/anie.200604274.
- M. Shirani, H.S. Ghaziaskar and C. Xu, Fuel Process. Technol., 124, 206 (2014); doi:10.1016/j.fuproc.2014.03.007.
- M. Balat, Energy Sources Part A, 30, 620 (2008); doi:10.1080/15567030600817258.
- A. Demirbas, Energy Convers. Manage., 42, 1357 (2001); doi:10.1016/S0196-8904(00)00137-0.
- S.D. Natarajan, R. Mohamad, R.A. Rahim and N.A. Rahman, J. Renew. Sustain. Energy, 4, 033110 (2012); doi:10.1063/1.3699621.
- F. Demirbas, Energy Sources Part A, 28, 1181 (2006); doi:10.1080/00908310500434556.
- F. Wang, Z.F. Chang, P.G. Duan, W.H. Yan, Y.P. Xu, L. Zhang, J. Miao and Y.C. Fan, Bioresour. Technol., 149, 509 (2013); doi:10.1016/j.biortech.2013.09.108.
- J.S. Midgett, B.E. Stevens, A.J. Dassey, J.J. Spivey and C.S. Theegala, Waste Biomass Valor, 3, 259 (2012); doi:10.1007/s12649-012-9129-3.
- K. Tekin and S. Karagöz, Res. Chem. Intermed, 39, 485 (2013); doi:10.1007/s11164-012-0572-3.
- W. Shi, S. Li, H. Jin, Y. Zhao and W. Yu, Energy Sources Part A, 35, 2149 (2013); doi:10.1080/15567036.2012.700996.
- S. Karagöz, T. Bhaskar, A. Muto, Y. Sakata and M.A. Uddin, Energy Fuels, 18, 234 (2004); doi:10.1021/ef030133g.
- F. Yu, R. Ruan, X. Lin, Y. Liu, R. Fu, Y. Li, P. Chen and Y. Gao, Appl. Biochem. Biotechnol., 130, 563 (2006); doi:10.1385/ABAB:130:1:563.
- M. Pohjakallio, G. Sundholm and P. Talonen, J. Electroanal. Chem., 406, 165 (1996); doi:10.1016/0022-0728(95)04436-1.
- T. Iwasita and F. Nart, J. Electroanal. Chem., 295, 215 (1990); doi:10.1016/0022-0728(90)85017-Y.
- D. Maldas and N. Shiraishi, Biomass Bioenergy, 12, 273 (1997); doi:10.1016/S0961-9534(96)00074-8.
- M. Wayman and J.H. Lora, Tappi, 61, 55 (1978).
- T. Panczyk, W. Gac, M. Panczyk, T. Borowiecki and W. Rudzinski, Langmuir, 22, 6613 (2006); doi:10.1021/la053191y.
- Z. Le, H. Zhang and L. Hong, Chem. Ind. Eng. Prog., 26, 261 (2007).
- M. Watanabe, T. Iida and H. Inomata, Energy Convers. Manage., 47, 3344 (2006); doi:10.1016/j.enconman.2006.01.009.
- S. Karagoz, T. Bhaskar, A. Muto and Y. Sakata, Bioresour. Technol., 97, 90 (2006); doi:10.1016/j.biortech.2005.02.051.
- D. Nowakowski, J. Jones, R. Brydson and A. Ross, Fuel, 86, 2389 (2007); doi:10.1016/j.fuel.2007.01.026.
- J.C. Bergmann, D.D. Tupinambá, O.Y.A. Costa, J.R.M. Almeida, C.C. Barreto and B.F. Quirino, Renew. Sustain. Energy Rev., 21, 411 (2013); doi:10.1016/j.rser.2012.12.058.
- N.J. Luo, K. Ouyang, F.H. Cao and T.C. Xiao, Biomass Bioenergy, 34, 489 (2010); doi:10.1016/j.biombioe.2009.12.013.
References
Y.M. Sani, W.M.A.W. Daud and A.R. Abdul Aziz, Appl. Catal. A, 470, 140 (2014); doi:10.1016/j.apcata.2013.10.052.
K. Gaska and A. Wandrasz, Waste Manage., 28, 973 (2008); doi:10.1016/j.wasman.2007.03.025.
M.E. Bildirici and F. Özaksoy, J. Renew. Sustain. Energy, 5, 023141 (2013); doi:10.1063/1.4802944.
A. Demirbas, Energy Convers. Manage., 50, 2239 (2009); doi:10.1016/j.enconman.2009.05.010.
S. Bezergianni and A. Dimitriadis, Renew. Sustain. Energy Rev., 21, 110 (2013); doi:10.1016/j.rser.2012.12.042.
J. Chheda, G. Huber and J. Dumesic, Angew. Chem. Int. Ed., 46, 7164 (2007); doi:10.1002/anie.200604274.
M. Shirani, H.S. Ghaziaskar and C. Xu, Fuel Process. Technol., 124, 206 (2014); doi:10.1016/j.fuproc.2014.03.007.
M. Balat, Energy Sources Part A, 30, 620 (2008); doi:10.1080/15567030600817258.
A. Demirbas, Energy Convers. Manage., 42, 1357 (2001); doi:10.1016/S0196-8904(00)00137-0.
S.D. Natarajan, R. Mohamad, R.A. Rahim and N.A. Rahman, J. Renew. Sustain. Energy, 4, 033110 (2012); doi:10.1063/1.3699621.
F. Demirbas, Energy Sources Part A, 28, 1181 (2006); doi:10.1080/00908310500434556.
F. Wang, Z.F. Chang, P.G. Duan, W.H. Yan, Y.P. Xu, L. Zhang, J. Miao and Y.C. Fan, Bioresour. Technol., 149, 509 (2013); doi:10.1016/j.biortech.2013.09.108.
J.S. Midgett, B.E. Stevens, A.J. Dassey, J.J. Spivey and C.S. Theegala, Waste Biomass Valor, 3, 259 (2012); doi:10.1007/s12649-012-9129-3.
K. Tekin and S. Karagöz, Res. Chem. Intermed, 39, 485 (2013); doi:10.1007/s11164-012-0572-3.
W. Shi, S. Li, H. Jin, Y. Zhao and W. Yu, Energy Sources Part A, 35, 2149 (2013); doi:10.1080/15567036.2012.700996.
S. Karagöz, T. Bhaskar, A. Muto, Y. Sakata and M.A. Uddin, Energy Fuels, 18, 234 (2004); doi:10.1021/ef030133g.
F. Yu, R. Ruan, X. Lin, Y. Liu, R. Fu, Y. Li, P. Chen and Y. Gao, Appl. Biochem. Biotechnol., 130, 563 (2006); doi:10.1385/ABAB:130:1:563.
M. Pohjakallio, G. Sundholm and P. Talonen, J. Electroanal. Chem., 406, 165 (1996); doi:10.1016/0022-0728(95)04436-1.
T. Iwasita and F. Nart, J. Electroanal. Chem., 295, 215 (1990); doi:10.1016/0022-0728(90)85017-Y.
D. Maldas and N. Shiraishi, Biomass Bioenergy, 12, 273 (1997); doi:10.1016/S0961-9534(96)00074-8.
M. Wayman and J.H. Lora, Tappi, 61, 55 (1978).
T. Panczyk, W. Gac, M. Panczyk, T. Borowiecki and W. Rudzinski, Langmuir, 22, 6613 (2006); doi:10.1021/la053191y.
Z. Le, H. Zhang and L. Hong, Chem. Ind. Eng. Prog., 26, 261 (2007).
M. Watanabe, T. Iida and H. Inomata, Energy Convers. Manage., 47, 3344 (2006); doi:10.1016/j.enconman.2006.01.009.
S. Karagoz, T. Bhaskar, A. Muto and Y. Sakata, Bioresour. Technol., 97, 90 (2006); doi:10.1016/j.biortech.2005.02.051.
D. Nowakowski, J. Jones, R. Brydson and A. Ross, Fuel, 86, 2389 (2007); doi:10.1016/j.fuel.2007.01.026.
J.C. Bergmann, D.D. Tupinambá, O.Y.A. Costa, J.R.M. Almeida, C.C. Barreto and B.F. Quirino, Renew. Sustain. Energy Rev., 21, 411 (2013); doi:10.1016/j.rser.2012.12.058.
N.J. Luo, K. Ouyang, F.H. Cao and T.C. Xiao, Biomass Bioenergy, 34, 489 (2010); doi:10.1016/j.biombioe.2009.12.013.