Copyright (c) 2025 Pandiyarajan A, Sushma C. K, David John Dmonte, Veeramani S, Vidhya Bhojan, Nandhakumar R

This work is licensed under a Creative Commons Attribution 4.0 International License.
TiO2-Anchored Graphene Nanocomposite as Robust Fluorometric Sensor for Ag+ Ions and its Real Sample Analysis
Corresponding Author(s) : B. Vidhya
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
A hybrid nanocomposite comprised of reduced graphene oxide and titanium dioxide (rGO-TiO2) was synthesized from graphite following reduced graphene oxide synthesis, which utilized a modified Hummer’s method and then subsequently reduced. The optical, morphological and structural properties of the hybrid composite were characterized with FTIR, UV-Vis, SEM, XRD and photoluminescence spectroscopy. The rGO-TiO2 composite retains its in-solution affinity and selectivity for Ag+ ions in an aqueous medium in spite of the presence of other metal ions. The sensing capabilities of this fluorometric sensor arise from the inhibition of photoinduced electron transfer mechanism (PET). The rGO-TiO2 hybrid composite represents a low-cost, sensitive and effective sensing platform for the hazardous monitoring of metal ions under ambient conditions, particularly silver.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A. Mishchenko, A. Carvalho and A.H. Castro Neto, Science, 353, aac9439 (2016); https://doi.org/10.1126/science.aac9439
- Z. Sun, A. Martinez and F. Wang, Nat. Photonics, 10, 227 (2016); https://doi.org/10.1038/nphoton.2016.15
- Z. Yan, D.L. Nika and A.A. Balandin, IET Circuits Devices Syst., 9, 4 (2015); https://doi.org/10.1049/iet-cds.2014.0093
- J. Chen, H. Bi, S. Sun, Y. Tang, W. Zhao, T. Lin, D. Wan, F. Huang, X. Zhou, X. Xie and M. Jiang, ACS Appl. Mater. Interfaces, 5, 1408 (2013); https://doi.org/10.1021/am302825w
- Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo and L. Peng, Nanoscale, 7, 10954 (2015); https://doi.org/10.1039/C5NR02292D
- M.F.R. Hanifah, J. Jaafar, M. Aziz, A.F. Ismail, M.A. Rahman and M.H.D. Othman, J. Teknologi, 74, 189 (2015); https://doi.org/10.11113/jt.v74.3555.
- N. Cao and Y. Zhang, J. Nanomaterials, 2015, 168125 (2015); https://doi.org/10.1155/2015/168125
- S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu and B. Yang, RSC Adv., 2, 2717 (2012); https://doi.org/10.1039/c2ra20182h
- S. Gurunathan and J.-H. Kim, Int. J. Nanomedicine, 11, 1927 (2016); https://doi.org/10.2147/IJN.S105264
- D. Wu, A.C. Sedgwick, T. Gunnlaugsson, E.U. Akkaya, J. Yoon and T.D. James, Chem. Soc. Rev., 46, 7105 (2017); https://doi.org/10.1039/C7CS00240H
- J. Shang, L. Ma, J. Li, W. Ai, T. Yu and G.G. Gurzadyan, Sci. Rep., 2, 792 (2012); https://doi.org/10.1038/srep00792
- S. Zhu, S. Tang, J. Zhang and B. Yang, Chem. Commun., 48, 4527 (2012); https://doi.org/10.1039/c2cc31201h
- I.J. Fernandes, A.F. Aroche, A. Schuck, P. Lamberty, C.R. Peter, W. Hasenkamp and T.L.A.C. Rocha, Sci. Rep., 10, 8878 (2020); https://doi.org/10.1038/s41598-020-65698-3
- S. Medici, M. Peana, G. Crisponi, V.M. Nwurchi, J.I. Lachowicz, M. Remelli and M.A. Zoroddu, Coord. Chem. Rev., 327–328, 349 (2016); https://doi.org/10.1016/j.ccr.2016.05.015
- P. Mathur, S. Jha, S. Ramteke and N.K. Jain, Artif. Cells Nanomed. Biotechnol., 46(sup1), 115 (2018); https://doi.org/10.1080/21691401.2017.1414825
- H.T. Ratte, Environ. Toxicol. Chem., 18, 89 (1999); https://doi.org/10.1002/etc.5620180112
- E. McGillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty, M. Cormican, P. Dockery, M. Prendergast, N. Rowan and D. Morris, Sci. Total Environ., 575, 231 (2017); https://doi.org/10.1016/j.scitotenv.2016.10.041
- X.-E. Zhao, C. Lei, Y. Gao, H. Gao, S. Zhu, X. Yang, J. You and H. Wang, Sens. Actuators B Chem., 253, 239 (2017); https://doi.org/10.1016/j.snb.2017.06.086
- H. Li, J. Zhai, and X. Sun, Langmuir, 27, 4305 (2011); https://doi.org/10.1021/la200052t
- D.J. Dmonte, A. Pandiyarajan, N. Bhuvanesh, S. Suresh and R. Nandhakumar, Mater. Lett., 227, 154 (2018); https://doi.org/10.1016/j.matlet.2018.05.051
- S.N. Alam, N. Sharma and L. Kumar, Graphene, 6, 1 (2017); https://doi.org/10.4236/graphene.2017.61001
- H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi and Y.H. Lee, Adv. Funct. Mater., 19, 1987 (2009); https://doi.org/10.1002/adfm.200900167
- J. Chen, B. Yao, C. Li and G. Shi, Carbon, 64, 225 (2013); https://doi.org/10.1016/j.carbon.2013.07.055
- H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k
- K. Porkodi and S.D. Arokiamary, Mater. Charact., 58, 495 (2007); https://doi.org/10.1016/j.matchar.2006.04.019
- Q. Lai, S. Zhu, X. Luo, M. Zou and S. Huang, AIP Adv., 2, 032146 (2012); https://doi.org/10.1063/1.4747817
- C. Basheer, J. Chem., 2012, 456586 (2012); https://doi.org/10.1155/2013/456586
- K. Velmurugan, S. Suresh, S. Santhoshkumar, M. Saranya and R. Nandhakumar, Luminescence, 31, 722 (2016); https://doi.org/10.1002/bio.3016
- B.N. Revanna, V. Kamat, A. Swamynayaka, K.K. Harish, K. Venkatesha, M. Madegowda, B. Poojary, S.S. Majani and S.P. Kollur, J. Fluoresc., 35, 1781 (2025); https://doi.org/10.1007/s10895-024-03646-4
- J. Prabhu, K. Velmurugan, Q. Zhang, S. Radhakrishnan, L. Tang and R. Nandhakumar, J. Photochem. Photobiol. Chem., 337, 6 (2017); https://doi.org/10.1016/j.jphotochem.2017.01.006
- J. Prabhu, K. Velmurugan and R. Nandhakumar, J. Anal. Chem., 70, 943 (2015); https://doi.org/10.1134/S1061934815080134
- K. Velmurugan and R. Nandhakumar, J. Lumin., 162, 8 (2015); https://doi.org/10.1016/j.jlumin.2015.01.039
References
K.S. Novoselov, A. Mishchenko, A. Carvalho and A.H. Castro Neto, Science, 353, aac9439 (2016); https://doi.org/10.1126/science.aac9439
Z. Sun, A. Martinez and F. Wang, Nat. Photonics, 10, 227 (2016); https://doi.org/10.1038/nphoton.2016.15
Z. Yan, D.L. Nika and A.A. Balandin, IET Circuits Devices Syst., 9, 4 (2015); https://doi.org/10.1049/iet-cds.2014.0093
J. Chen, H. Bi, S. Sun, Y. Tang, W. Zhao, T. Lin, D. Wan, F. Huang, X. Zhou, X. Xie and M. Jiang, ACS Appl. Mater. Interfaces, 5, 1408 (2013); https://doi.org/10.1021/am302825w
Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo and L. Peng, Nanoscale, 7, 10954 (2015); https://doi.org/10.1039/C5NR02292D
M.F.R. Hanifah, J. Jaafar, M. Aziz, A.F. Ismail, M.A. Rahman and M.H.D. Othman, J. Teknologi, 74, 189 (2015); https://doi.org/10.11113/jt.v74.3555.
N. Cao and Y. Zhang, J. Nanomaterials, 2015, 168125 (2015); https://doi.org/10.1155/2015/168125
S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu and B. Yang, RSC Adv., 2, 2717 (2012); https://doi.org/10.1039/c2ra20182h
S. Gurunathan and J.-H. Kim, Int. J. Nanomedicine, 11, 1927 (2016); https://doi.org/10.2147/IJN.S105264
D. Wu, A.C. Sedgwick, T. Gunnlaugsson, E.U. Akkaya, J. Yoon and T.D. James, Chem. Soc. Rev., 46, 7105 (2017); https://doi.org/10.1039/C7CS00240H
J. Shang, L. Ma, J. Li, W. Ai, T. Yu and G.G. Gurzadyan, Sci. Rep., 2, 792 (2012); https://doi.org/10.1038/srep00792
S. Zhu, S. Tang, J. Zhang and B. Yang, Chem. Commun., 48, 4527 (2012); https://doi.org/10.1039/c2cc31201h
I.J. Fernandes, A.F. Aroche, A. Schuck, P. Lamberty, C.R. Peter, W. Hasenkamp and T.L.A.C. Rocha, Sci. Rep., 10, 8878 (2020); https://doi.org/10.1038/s41598-020-65698-3
S. Medici, M. Peana, G. Crisponi, V.M. Nwurchi, J.I. Lachowicz, M. Remelli and M.A. Zoroddu, Coord. Chem. Rev., 327–328, 349 (2016); https://doi.org/10.1016/j.ccr.2016.05.015
P. Mathur, S. Jha, S. Ramteke and N.K. Jain, Artif. Cells Nanomed. Biotechnol., 46(sup1), 115 (2018); https://doi.org/10.1080/21691401.2017.1414825
H.T. Ratte, Environ. Toxicol. Chem., 18, 89 (1999); https://doi.org/10.1002/etc.5620180112
E. McGillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty, M. Cormican, P. Dockery, M. Prendergast, N. Rowan and D. Morris, Sci. Total Environ., 575, 231 (2017); https://doi.org/10.1016/j.scitotenv.2016.10.041
X.-E. Zhao, C. Lei, Y. Gao, H. Gao, S. Zhu, X. Yang, J. You and H. Wang, Sens. Actuators B Chem., 253, 239 (2017); https://doi.org/10.1016/j.snb.2017.06.086
H. Li, J. Zhai, and X. Sun, Langmuir, 27, 4305 (2011); https://doi.org/10.1021/la200052t
D.J. Dmonte, A. Pandiyarajan, N. Bhuvanesh, S. Suresh and R. Nandhakumar, Mater. Lett., 227, 154 (2018); https://doi.org/10.1016/j.matlet.2018.05.051
S.N. Alam, N. Sharma and L. Kumar, Graphene, 6, 1 (2017); https://doi.org/10.4236/graphene.2017.61001
H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi and Y.H. Lee, Adv. Funct. Mater., 19, 1987 (2009); https://doi.org/10.1002/adfm.200900167
J. Chen, B. Yao, C. Li and G. Shi, Carbon, 64, 225 (2013); https://doi.org/10.1016/j.carbon.2013.07.055
H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k
K. Porkodi and S.D. Arokiamary, Mater. Charact., 58, 495 (2007); https://doi.org/10.1016/j.matchar.2006.04.019
Q. Lai, S. Zhu, X. Luo, M. Zou and S. Huang, AIP Adv., 2, 032146 (2012); https://doi.org/10.1063/1.4747817
C. Basheer, J. Chem., 2012, 456586 (2012); https://doi.org/10.1155/2013/456586
K. Velmurugan, S. Suresh, S. Santhoshkumar, M. Saranya and R. Nandhakumar, Luminescence, 31, 722 (2016); https://doi.org/10.1002/bio.3016
B.N. Revanna, V. Kamat, A. Swamynayaka, K.K. Harish, K. Venkatesha, M. Madegowda, B. Poojary, S.S. Majani and S.P. Kollur, J. Fluoresc., 35, 1781 (2025); https://doi.org/10.1007/s10895-024-03646-4
J. Prabhu, K. Velmurugan, Q. Zhang, S. Radhakrishnan, L. Tang and R. Nandhakumar, J. Photochem. Photobiol. Chem., 337, 6 (2017); https://doi.org/10.1016/j.jphotochem.2017.01.006
J. Prabhu, K. Velmurugan and R. Nandhakumar, J. Anal. Chem., 70, 943 (2015); https://doi.org/10.1134/S1061934815080134
K. Velmurugan and R. Nandhakumar, J. Lumin., 162, 8 (2015); https://doi.org/10.1016/j.jlumin.2015.01.039