Copyright (c) 2025 Dr.SUBRAMANI A

This work is licensed under a Creative Commons Attribution 4.0 International License.
Photophysical and Spectroscopic Insights into the Interaction Mechanism of Azo-Ester Dye with Ovalbumin: A Molecular Docking Perspective
Corresponding Author(s) : A. Subramani
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
In this work, an azo-ester dye with phenol blocked isocyante and N,N'-dialkanol groups at the ends were studied as fluorescent probe for protein detection. The photophysical properties of the azo-ester dye were characterized both in its unbound state and in the presence of a globular protein like ovalbumin. Upon increasing concentrations of ovalbumin, a significant enhancement in fluorescence intensity was observed, indicating strong interaction between the dye and the protein. The formation of a 1:1 host-guest complex was further supported by competitive binding experiments using hydrogen-bonding molecules such as urea and guanidine hydrochloride (GuHCl), which disrupted the dye-protein complex and led to the formation of solute-protein hydrogen-bonded interactions instead. Molecular docking studies provided the additional insight into the binding mechanism, revealing a negative docking score for the dye-ovalbumin complex, attributed to hydrogen bonding, π–π stacking and multiple hydrophobic interactions. These findings suggest that the dye binds strongly to ovalbumin and may play a role in modulating its activity, highlighting potential applications in therapeutic strategies and cancer prevention.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Juvekar, C.S. Lim, D.J. Lee, S.J. Park, G.O. Song, H. Kang and H.M. Kim, Chem. Sci., 12, 427 (2021); https://doi.org/10.1039/D0SC05686C
- S. Sari, S. Ünver, T. Avsar, Ş. Özçelik, T. Kilic and M.U. Kahveci, Polym. Chem., 15, 2177 (2024); https://doi.org/10.1039/D4PY00318G
- Y. Ali, S.A. Hamid and U. Rashid, Mini-Rev. Med. Chem., 18, 1548 (2018); https://doi.org/10.2174/1389557518666180524113111
- M.N. Khan, D.K. Parmar and D. Das, Mini-Rev. Med. Chem., 21, 1071 (2021); https://doi.org/10.2174/1389557520999201123210025
- M.V. Khan, M. Ishtikhar, G. Rabbani, M. Zaman, A.S. Abdelhameed and R.H. Khan, Int. J. Biol. Macromol., 94, 290 (2017); https://doi.org/10.1016/j.ijbiomac.2016.10.023
- G. Rabbani, M.J. Khan, A. Ahmad, M.Y. Maskat and R.H. Khan, Colloids Surf. B Biointerfaces, 123, 96 (2014); https://doi.org/10.1016/j.colsurfb.2014.08.035
- P. Manivel, S. Anandakumar and M. Ilanchelian, Luminescence, 30, 729 (2015); https://doi.org/10.1002/bio.2812
- P. Manivel, M. Paulpandi, K. Murugan, G. Benelli and M. Ilanchelian, J. Biomol. Struct. Dyn., 35, 3012 (2017); https://doi.org/10.1080/07391102.2016.1235513
- A. Sumita, G. Shoba, R. Thamarai Selvan, K. Anju, M.D. Balakumaran and R. Kumaran, Results Chem., 3, 100187 (2021); https://doi.org/10.1016/j.rechem.2021.100187
- A. Jahanban-Esfahlan and V. Panahi-Azar, Food Chem., 202, 426 (2016); https://doi.org/10.1016/j.foodchem.2016.02.026
- R.T. Selvan, G. Shoba, M.S. Sangeetha, V.S. Merin, R. Kumaran, P. Tamizhdurai, M. Alanazi and P.S. Ganesh, J. Saudi Chem. Soc., 25 101364 (2021); https://doi.org/10.1016/j.jscs.2021.101364
- R. Wang, Y. Yin, H. Li, Y. Wang, J.-J. Pu, R. Wang, H. Dou, C. Song and R. Wang, Mol. Biol. Rep., 40, 3409 (2013); https://doi.org/10.1007/s11033-012-2418-x
- R. Rajamanikandan, A.S. Sharma and M. Ilanchelian, J. Biomol. Struct. Dyn., 37, 4292 (2019); https://doi.org/10.1080/07391102.2018.1550441
- A.C.F. de Lyra, A.L. dos Santos Silva, E.C.L. dos Santos, A.M.Q. López, J.C.S. da Silva, I.M. Figueiredo and J.C.C. Santos, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117747 (2020); https://doi.org/10.1016/j.saa.2019.117747
- J.A. Huntington and P.E. Stein, J. Chromatogr., Biomed. Appl., 756, 189 (2001); https://doi.org/10.1016/S0378-4347(01)00108-6
- T. Strixner and U. Kulozik, eds.: G.O. Phillips and P.A. Williams, Egg Proteins, In: Handbook of Food Proteins, Cambridge, UK: Woodhead Publishing, edn 1, pp. 150–209 (2011).
- E. Remold-O’Donnell, FEBS Lett., 315, 105 (1993); https://doi.org/10.1016/0014-5793(93)81143-N
- M.D.D.A. Dantas, H.D.A. Tenorio, T.I.B. Lopes, H.J.V. Pereira, A.J. Marsaioli, I.M. Figueiredo and J.C.C. Santos, Int. J. Biol. Macromol., 102, 505 (2017); https://doi.org/10.1016/j.ijbiomac.2017.04.052
- P. Manivel, M. Parthiban and M. Ilanchelian, J. Biomol. Struct. Dyn., 38, 1838 (2019); https://doi.org/10.1080/07391102.2019.1618734
- R. Kumaran and P. Ramamurthy, J. Phys. Chem. B, 110, 23783 (2006); https://doi.org/10.1021/jp0628378
- Y. Lu, Y.-L. Wang, S.-H. Gao, G.-K. Wang, C.-L. Yan and D.-J. Chen, J. Lumin., 129, 1048 (2009); https://doi.org/10.1016/j.jlumin.2009.04.030
- Q. Wang, C. Huang, M. Jiang, Y. Zhu, J. Wang, J. Chen and J. Shi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 156, 155 (2016); https://doi.org/10.1016/j.saa.2015.12.003
- S. Widyarti, S. Permana, and S.B. Sumitro, AIP Conf. Proc. 2021, 070015 (2018); https://doi.org/10.1063/1.5062813
- Q. Huang, F. Geng, M. Ma, Y. Jin, J. Fang and S. Sun, Asian J. Chem., 25, 3692 (2013); https://doi.org/10.14233/ajchem.2013.13724
- G.E. Jayanti, S. Widyarti, A. Sabarudin and S.B. Sumitro, Asian J. Pharm. Clin. Res., 11, 340 (2018); https://doi.org/10.22159/ajpcr.2018.v11i7.25440
- Y. Liu, Y. Cai, D. Ying, Y. Fu, Y. Xiong and X. Le, Int. J. Biol. Macromol., 116, 893 (2018); https://doi.org/10.1016/j.ijbiomac.2018.05.089
- M.D.A. Dantas, H.A. Tenório, T.I.B. Lopes, H.J.V. Pereira, A.J. Marsaioli, I.M. Figueiredo and J.C.C. Santos, Int. J. Biol. Macromol., 102, 505 (2017); https://doi.org/10.1016/j.ijbiomac.2017.04.052
- X. Fu, T. Belwal, Y. He, Y. Xu, L. Li and Z. Luo, Food Chem., 320, 126616 (2020); https://doi.org/10.1016/j.foodchem.2020.126616
- J. Wang, Y. Dadmohammadi, A. Jaiswal and A. Abbaspourrad, J. Agric. Food Chem., 68, 10184 (2020); https://doi.org/10.1021/acs.jafc.0c03201
- O.E. Sponton, A.A. Perez, C.R. Carrara and L.G. Santiago, Colloids Surf. B Biointerfaces, 128, 219 (2015); https://doi.org/10.1016/j.colsurfb.2015.01.037
- J. Wang, Y. Dadmohammadi, A. Jaiswal and A. Abbaspourrad, J. Agric. Food Chem., 68, 10184 (2020); https://doi.org/10.1021/acs.jafc.0c03201
- M. van de Weert and L. Stella, J. Mol. Struct., 998, 144 (2011); https://doi.org/10.1016/j.molstruc.2011.05.023
- K.N. Houk, A.G. Leach, S.P. Kim and X. Zhang, Angew. Chem. Int. Ed., 42, 4872 (2003); https://doi.org/10.1002/anie.200200565
- R.J. Morris, R.J. Najmanovich, A. Kahraman and J.M. Thornton, Bioinformatics, 21, 2347 (2005); https://doi.org/10.1093/bioinformatics/bti337
- A. Kahraman, R.J. Morris, R.A. Laskowski and J.M. Thornton, J. Mol. Biol., 368, 283 (2007); https://doi.org/10.1016/j.jmb.2007.01.086
- P.S. Suresh, A. Kumar, R. Kumar and V.P. Singh, J. Mol. Graph. Model., 26, 845 (2008); https://doi.org/10.1016/j.jmgm.2007.05.005
- A. Gopalakrishnan, M. Nandhagopal, M. Narayanasamy, C. Sivakumar, M. Vanjinathan and A.S. Nasar, J. Polym. Sci., 62, 5467 (2024); https://doi.org/10.1002/pol.20240496
- D. Shivakumar, J. Williams, Y. Wu, W. Damm, J. Shelley and W. Sherman, J. Chem. Theor. Comput., 6, 1509 (2010); https://doi.org/10.1021/ct900587b
- H. Rau, Angew. Chem. Int. Ed. Engl., 12, 224 (1973); https://doi.org/10.1002/anie.197302241
- G. Rabbani, M.H. Baig, E.J. Lee, W.K. Cho, J.Y. Ma and I. Choi, Mol. Pharm., 14, 1656 (2017); https://doi.org/10.1021/acs.molpharmaceut.6b01124
- F. Sun, W. Zong, R. Liu, J. Chai and Y. Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 142 (2010); https://doi.org/10.1016/j.saa.2010.03.002
- F.-F. Tian, F.-L. Jiang, X.-L. Han, C. Xiang, Y.-S. Ge, J.-H. Li, Y. Zhang, R. Li, X.-L. Ding and Y. Liu, J. Phys. Chem. B, 114, 14842 (2010); https://doi.org/10.1021/jp105766n
- P.O. Vardevanyan, A.P. Antonyan, M.A. Parsadanyan, M.A. Shahinyan and M.S. Mikaelyan, Biophys. Rev. Lett., 14, 17 (2019); https://doi.org/10.1142/S1793048019500012
- Y. Lu, S. Li, H. Xu, T. Zhang, X. Lin and X. Wu, J. Agric. Food Chem., 66, 9794 (2018); https://doi.org/10.1021/acs.jafc.8b03410
- A. Sułkowska, J. Mol. Struct., 614, 227 (2002); https://doi.org/10.1016/S0022-2860(02)00256-9
- K. Rajendran and R. Peruma, J. Lumin., 130, 1203 (2010); https://doi.org/10.1016/j.jlumin.2010.02.022
- R.A. Cox, eds.: L. Grossman and K. Moldave, The Use of Guanidinium Chloride in the Isolation of Nucleic Acids, In: Methods in Enzymology, Academic: New York, vol 12, pp. 120-129 (1968).
- N. Sarkar, K. Das, D. Nath and K. Bhattacharyya, Chem. Phys. Lett., 196, 491 (1992); https://doi.org/10.1016/0009-2614(92)85726-Q
- R. Kumaran and P. Ramamurthy, J. Fluoresc., 21, 1499 (2011); https://doi.org/10.1007/s10895-011-0836-0
- E. Ahmad, G. Rabbani, N. Zaidi, S. Singh, M. Rehan, M.M. Khan, S.K. Rahman, Z. Quadri, M. Shadab, M.T. Ashraf, N. Subbarao, R. Bhat and R.H. Khan, PLoS One, 6, e26186 (2011); https://doi.org/10.1371/journal.pone.0026186
References
V. Juvekar, C.S. Lim, D.J. Lee, S.J. Park, G.O. Song, H. Kang and H.M. Kim, Chem. Sci., 12, 427 (2021); https://doi.org/10.1039/D0SC05686C
S. Sari, S. Ünver, T. Avsar, Ş. Özçelik, T. Kilic and M.U. Kahveci, Polym. Chem., 15, 2177 (2024); https://doi.org/10.1039/D4PY00318G
Y. Ali, S.A. Hamid and U. Rashid, Mini-Rev. Med. Chem., 18, 1548 (2018); https://doi.org/10.2174/1389557518666180524113111
M.N. Khan, D.K. Parmar and D. Das, Mini-Rev. Med. Chem., 21, 1071 (2021); https://doi.org/10.2174/1389557520999201123210025
M.V. Khan, M. Ishtikhar, G. Rabbani, M. Zaman, A.S. Abdelhameed and R.H. Khan, Int. J. Biol. Macromol., 94, 290 (2017); https://doi.org/10.1016/j.ijbiomac.2016.10.023
G. Rabbani, M.J. Khan, A. Ahmad, M.Y. Maskat and R.H. Khan, Colloids Surf. B Biointerfaces, 123, 96 (2014); https://doi.org/10.1016/j.colsurfb.2014.08.035
P. Manivel, S. Anandakumar and M. Ilanchelian, Luminescence, 30, 729 (2015); https://doi.org/10.1002/bio.2812
P. Manivel, M. Paulpandi, K. Murugan, G. Benelli and M. Ilanchelian, J. Biomol. Struct. Dyn., 35, 3012 (2017); https://doi.org/10.1080/07391102.2016.1235513
A. Sumita, G. Shoba, R. Thamarai Selvan, K. Anju, M.D. Balakumaran and R. Kumaran, Results Chem., 3, 100187 (2021); https://doi.org/10.1016/j.rechem.2021.100187
A. Jahanban-Esfahlan and V. Panahi-Azar, Food Chem., 202, 426 (2016); https://doi.org/10.1016/j.foodchem.2016.02.026
R.T. Selvan, G. Shoba, M.S. Sangeetha, V.S. Merin, R. Kumaran, P. Tamizhdurai, M. Alanazi and P.S. Ganesh, J. Saudi Chem. Soc., 25 101364 (2021); https://doi.org/10.1016/j.jscs.2021.101364
R. Wang, Y. Yin, H. Li, Y. Wang, J.-J. Pu, R. Wang, H. Dou, C. Song and R. Wang, Mol. Biol. Rep., 40, 3409 (2013); https://doi.org/10.1007/s11033-012-2418-x
R. Rajamanikandan, A.S. Sharma and M. Ilanchelian, J. Biomol. Struct. Dyn., 37, 4292 (2019); https://doi.org/10.1080/07391102.2018.1550441
A.C.F. de Lyra, A.L. dos Santos Silva, E.C.L. dos Santos, A.M.Q. López, J.C.S. da Silva, I.M. Figueiredo and J.C.C. Santos, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117747 (2020); https://doi.org/10.1016/j.saa.2019.117747
J.A. Huntington and P.E. Stein, J. Chromatogr., Biomed. Appl., 756, 189 (2001); https://doi.org/10.1016/S0378-4347(01)00108-6
T. Strixner and U. Kulozik, eds.: G.O. Phillips and P.A. Williams, Egg Proteins, In: Handbook of Food Proteins, Cambridge, UK: Woodhead Publishing, edn 1, pp. 150–209 (2011).
E. Remold-O’Donnell, FEBS Lett., 315, 105 (1993); https://doi.org/10.1016/0014-5793(93)81143-N
M.D.D.A. Dantas, H.D.A. Tenorio, T.I.B. Lopes, H.J.V. Pereira, A.J. Marsaioli, I.M. Figueiredo and J.C.C. Santos, Int. J. Biol. Macromol., 102, 505 (2017); https://doi.org/10.1016/j.ijbiomac.2017.04.052
P. Manivel, M. Parthiban and M. Ilanchelian, J. Biomol. Struct. Dyn., 38, 1838 (2019); https://doi.org/10.1080/07391102.2019.1618734
R. Kumaran and P. Ramamurthy, J. Phys. Chem. B, 110, 23783 (2006); https://doi.org/10.1021/jp0628378
Y. Lu, Y.-L. Wang, S.-H. Gao, G.-K. Wang, C.-L. Yan and D.-J. Chen, J. Lumin., 129, 1048 (2009); https://doi.org/10.1016/j.jlumin.2009.04.030
Q. Wang, C. Huang, M. Jiang, Y. Zhu, J. Wang, J. Chen and J. Shi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 156, 155 (2016); https://doi.org/10.1016/j.saa.2015.12.003
S. Widyarti, S. Permana, and S.B. Sumitro, AIP Conf. Proc. 2021, 070015 (2018); https://doi.org/10.1063/1.5062813
Q. Huang, F. Geng, M. Ma, Y. Jin, J. Fang and S. Sun, Asian J. Chem., 25, 3692 (2013); https://doi.org/10.14233/ajchem.2013.13724
G.E. Jayanti, S. Widyarti, A. Sabarudin and S.B. Sumitro, Asian J. Pharm. Clin. Res., 11, 340 (2018); https://doi.org/10.22159/ajpcr.2018.v11i7.25440
Y. Liu, Y. Cai, D. Ying, Y. Fu, Y. Xiong and X. Le, Int. J. Biol. Macromol., 116, 893 (2018); https://doi.org/10.1016/j.ijbiomac.2018.05.089
M.D.A. Dantas, H.A. Tenório, T.I.B. Lopes, H.J.V. Pereira, A.J. Marsaioli, I.M. Figueiredo and J.C.C. Santos, Int. J. Biol. Macromol., 102, 505 (2017); https://doi.org/10.1016/j.ijbiomac.2017.04.052
X. Fu, T. Belwal, Y. He, Y. Xu, L. Li and Z. Luo, Food Chem., 320, 126616 (2020); https://doi.org/10.1016/j.foodchem.2020.126616
J. Wang, Y. Dadmohammadi, A. Jaiswal and A. Abbaspourrad, J. Agric. Food Chem., 68, 10184 (2020); https://doi.org/10.1021/acs.jafc.0c03201
O.E. Sponton, A.A. Perez, C.R. Carrara and L.G. Santiago, Colloids Surf. B Biointerfaces, 128, 219 (2015); https://doi.org/10.1016/j.colsurfb.2015.01.037
J. Wang, Y. Dadmohammadi, A. Jaiswal and A. Abbaspourrad, J. Agric. Food Chem., 68, 10184 (2020); https://doi.org/10.1021/acs.jafc.0c03201
M. van de Weert and L. Stella, J. Mol. Struct., 998, 144 (2011); https://doi.org/10.1016/j.molstruc.2011.05.023
K.N. Houk, A.G. Leach, S.P. Kim and X. Zhang, Angew. Chem. Int. Ed., 42, 4872 (2003); https://doi.org/10.1002/anie.200200565
R.J. Morris, R.J. Najmanovich, A. Kahraman and J.M. Thornton, Bioinformatics, 21, 2347 (2005); https://doi.org/10.1093/bioinformatics/bti337
A. Kahraman, R.J. Morris, R.A. Laskowski and J.M. Thornton, J. Mol. Biol., 368, 283 (2007); https://doi.org/10.1016/j.jmb.2007.01.086
P.S. Suresh, A. Kumar, R. Kumar and V.P. Singh, J. Mol. Graph. Model., 26, 845 (2008); https://doi.org/10.1016/j.jmgm.2007.05.005
A. Gopalakrishnan, M. Nandhagopal, M. Narayanasamy, C. Sivakumar, M. Vanjinathan and A.S. Nasar, J. Polym. Sci., 62, 5467 (2024); https://doi.org/10.1002/pol.20240496
D. Shivakumar, J. Williams, Y. Wu, W. Damm, J. Shelley and W. Sherman, J. Chem. Theor. Comput., 6, 1509 (2010); https://doi.org/10.1021/ct900587b
H. Rau, Angew. Chem. Int. Ed. Engl., 12, 224 (1973); https://doi.org/10.1002/anie.197302241
G. Rabbani, M.H. Baig, E.J. Lee, W.K. Cho, J.Y. Ma and I. Choi, Mol. Pharm., 14, 1656 (2017); https://doi.org/10.1021/acs.molpharmaceut.6b01124
F. Sun, W. Zong, R. Liu, J. Chai and Y. Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 142 (2010); https://doi.org/10.1016/j.saa.2010.03.002
F.-F. Tian, F.-L. Jiang, X.-L. Han, C. Xiang, Y.-S. Ge, J.-H. Li, Y. Zhang, R. Li, X.-L. Ding and Y. Liu, J. Phys. Chem. B, 114, 14842 (2010); https://doi.org/10.1021/jp105766n
P.O. Vardevanyan, A.P. Antonyan, M.A. Parsadanyan, M.A. Shahinyan and M.S. Mikaelyan, Biophys. Rev. Lett., 14, 17 (2019); https://doi.org/10.1142/S1793048019500012
Y. Lu, S. Li, H. Xu, T. Zhang, X. Lin and X. Wu, J. Agric. Food Chem., 66, 9794 (2018); https://doi.org/10.1021/acs.jafc.8b03410
A. Sułkowska, J. Mol. Struct., 614, 227 (2002); https://doi.org/10.1016/S0022-2860(02)00256-9
K. Rajendran and R. Peruma, J. Lumin., 130, 1203 (2010); https://doi.org/10.1016/j.jlumin.2010.02.022
R.A. Cox, eds.: L. Grossman and K. Moldave, The Use of Guanidinium Chloride in the Isolation of Nucleic Acids, In: Methods in Enzymology, Academic: New York, vol 12, pp. 120-129 (1968).
N. Sarkar, K. Das, D. Nath and K. Bhattacharyya, Chem. Phys. Lett., 196, 491 (1992); https://doi.org/10.1016/0009-2614(92)85726-Q
R. Kumaran and P. Ramamurthy, J. Fluoresc., 21, 1499 (2011); https://doi.org/10.1007/s10895-011-0836-0
E. Ahmad, G. Rabbani, N. Zaidi, S. Singh, M. Rehan, M.M. Khan, S.K. Rahman, Z. Quadri, M. Shadab, M.T. Ashraf, N. Subbarao, R. Bhat and R.H. Khan, PLoS One, 6, e26186 (2011); https://doi.org/10.1371/journal.pone.0026186