Copyright (c) 2025 Dr. Monika Agarwal, Rajeev Kumar, Lokesh Kumar Saxena, Dr. Rohit Singh, Ankita Tripathi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparative Analysis of the Treatment Potential of Cationic Starch and its Polyacrylamide Blend on Tannery and Sewage Effluents
Corresponding Author(s) : Monika Agarwal
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
The discharge of tannery and sewage wastewater is loaded with many toxic wastes, especially elevated levels of total dissolved solids (TDS) and suspended solids (SS) poses a significant environmental concern. This study reports the flocculation efficacy of cationic starch (CS) and its polymeric blend with polyacrylamide (CS-PAM) through the standard Jar Test method. Key operational parameters including polymer dosage, contact time and pH were optimized. Maximum solid removal efficiencies of 94% for tannery and 96% for sewage effluents were achieved at optimal dosages of 3.2 × 10–4 g/L and 1.6 × 10–4 g/L, respectively, under acidic (pH 4.0) and neutral (pH 7.0) conditions. X-ray diffraction analysis confirmed the interaction of flocs with the modified polymers. The results indicate that while cationic starch shows the substantial flocculation due to its inherent cationic nature, the CS-PAM copolymer exhibits enhanced performance. These findings highlight the potential of CS-based flocculants as sustainable, biodegradable and cost-effective alternatives to conventional synthetic flocculants for industrial and municipal wastewater treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Bhardwaj, S. Kumar and D. Singh, Water Qual. Res. J. Canada, 58, 128 (2023); https://doi.org/10.2166/wqrj.2023.002
- J. Zhao, Q. Wu, Y. Tang, J. Zhou and H. Guo, J. Leather Sci. Eng., 4, 10 (2022); https://doi.org/10.1186/s42825-022-00082-7
- J. Pandit and A.K. Sharma, Environ. Ecol., 23, 1 (2024); https://doi.org/10.9734/ajee/2024/v23i10605
- G. Crini, Prog. Polym. Sci., 30, 38 (2005); https://doi.org/10.1016/j.progpolymsci.2004.11.002
- J. El-Gaayda, F.E. Titchou, R. Oukhrib, P.S. Yap, T. Liu, M. Hamdani and R. Ait Akbour, J. Environ. Chem. Eng., 9, 106060 (2021); https://doi.org/10.1016/j.jece.2021.106060
- G. Crini and E. Lichtfouse, Environ. Chem. Lett., 17, 145 (2019); https://doi.org/10.1007/s10311-018-0785-9
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas and A.M. Mayes, Nature, 452, 301 (2008); https://doi.org/10.1038/nature06599
- C.S. Lee, J. Robinson and M.F. Chong, Process Saf. Environ. Prot., 92, 489 (2014); https://doi.org/10.1016/j.psep.2014.04.010
- Y.X. Zhao, B.Y. Gao, H.K. Shon, B.C. Cao and J.-H. Kim, J. Hazard. Mater., 185, 1536 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.084
- A. Mishra, S. Rajani, M. Agarwal and R. Dubey, Polym. Bull., 48, 439 (2002); https://doi.org/10.1007/s00289-002-0056-5
- A. Mishra, A. Yadav, M. Agarwal and S. Rajani, Colloid Polym. Sci., 282, 300 (2004); https://doi.org/10.1007/s00396-003-0895-0
- Z. Steinmetz, C. Plicht, C. Buchmann, M. Knott, M. Meyer, S. Müller-Schüssele, D. Strieth, M.H. Prosenc, H. Steinmetz, H.F. Jungkunst, W.R. Thiel and M. Bundschuh, TrAC Trends Analyt. Chem., 181, 118000 (2024); https://doi.org/10.1016/j.trac.2024.118000
- A.A. Gafar, M.E. Khayat, M.B.H.A. Rahim and M.Y. Shukor, Bioremed. Sci. Technol. Res., 5, 8 (2017); https://doi.org/10.54987/bstr.v5i2.357
- C.Y. Teh, P.M. Budiman, K.P.Y. Shak and T.Y. Wu, Ind. Eng. Chem. Res., 55, 4363 (2016); https://doi.org/10.1021/acs.iecr.5b04703
- L. Zhou, H. Zhou and X. Yang, Sep. Purif. Technol., 210, 93 (2019); https://doi.org/10.1016/j.seppur.2018.07.089
- V.K. Thakur and S.I. Voicu, Carbohydr. Polym., 146, 148 (2016); https://doi.org/10.1016/j.carbpol.2016.03.030
- A. Mishra, A. Yadav, M. Agarwal and M. Bajpai, React. Funct. Polym., 59, 99 (2004); https://doi.org/10.1016/j.reactfunctpolym.2003.08.008
- M. Agarwal, S. Rajani, A. Mishra and J.S.P. Rai, Int. J. Polym. Mater., 52, 1049 (2003); https://doi.org/10.1080/714975900
- A. Mishra, M. Agarwal and A. Yadav, Colloid Polym. Sci., 281, 164 (2003); https://doi.org/10.1007/s00396-002-0765-1
- M. Agarwal, R. Srinivasan and A. Mishra, Macromol. Mater. Eng., 286, 560 (2001); https://doi.org/10.1002/1439-2054(20010901)286:9<560::AID-MAME560>3.0.CO; 2-B
- D. Krentz, C. Lohmann, S. Schwarz, S. Bratskaya, T. Liebert, J. Laube, T. Heinze and W. Kulicke, Stärke, 58, 161 (2006); https://doi.org/10.1002/star.200500431
- Y. Song, W. Gan, Q. Li, Y. Guo, J. Zhou and L. Zhang, Carbohydr. Polym., 86, 171 (2011); https://doi.org/10.1016/j.carbpol.2011.04.025
- K. Ho, S.Y. Lau, L.H. Ting, A. Zahir, M.K. Lam, S.Y. Choy, S. Lim and T.I. Shi, Next Sustain., 5, 100083 (2025); https://doi.org/10.1016/j.nxsust.2024.100083
- P. Loganathan, M. Gradzielski, H. Bustamante and S. Vigneswaran, Environ. Sci. Water Res. Technol., 6, 45 (2020); https://doi.org/10.1039/C9EW00596J
- X. Jiang, Y. Li, X. Tang, J. Jiang, Q. He, Z. Xiong and H. Zheng, Environ. Sci. Pollut. Res. Int., 28, 46934 (2021); https://doi.org/10.1007/s11356-021-15299-y
- S.M. Abdo, R.H. Mahmoud, M. Youssef and M.E. El-Naggar, Groundw. Sustain. Dev., 10, 100331 (2020); https://doi.org/10.1016/j.gsd.2020.100331
- L. Ghimici and M. Nichifor, Carbohydr. Polym., 190, 162 (2018); https://doi.org/10.1016/j.carbpol.2018.02.075
- B. Li, J. Zhao, W. Ge, W. Li and H. Yuan, J. Environ. Chem. Eng., 10, 107263 (2022); https://doi.org/10.1016/j.jece.2022.107263
- S.Y. Bratskaya, A.V. Pestov, Y.G. Yatluk and V.A. Avramenko, Colloids Surf. A Physicochem. Eng. Asp., 339, 140 (2009); https://doi.org/10.1016/j.colsurfa.2009.02.013
- F. Matebese, A.K. Mosai, H. Tutu and Z.R. Tshentu, Heliyon, 10, e24730 (2024); https://doi.org/10.1016/j.heliyon.2024.e24730
- Z. Zhang, Y. Lu, S. Gao and S. Wu, Separations, 12, 72 (2025); https://doi.org/10.3390/separations12030072
- D. Gomez-Maldonado, A.M. Reynolds, D.J. Burnett, R.J. Babu, M.N. Waters and M.S. Peresin, RSC Adv., 12, 20330 (2022); https://doi.org/10.1039/D2RA03556A
- J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, IWA Publishing, edn. 2, vol. 5 (2015).
- J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, IWA Publishing, vol. 15 (2016).
- A.P.M. Velenturf and P. Purnell, Sustain. Prod. Consum., 27, 1437 (2021); https://doi.org/10.1016/j.spc.2021.02.018
- A.B. Abdullahi, A.R. Siregar, W. Pakiding and Mahyuddin, IOP Conf. Ser. Earth Environ. Sci., 788, 012155 (2021); https://doi.org/10.1088/1755-1315/788/1/012155
- M. Pivokonský, K. Novotná, L. Čermáková, R. Petříček, Jar Tests for Water Treatment Optimisation: How to Perform Jar Tests-A Hand-book, IWA Publishing, USA (2022).
- E.A. López-Maldonado, M.T. Oropeza-Guzman, J.L. Jurado-Baizaval and A. Ochoa-Terán, J. Hazard. Mater., 279, 1 (2014); https://doi.org/10.1016/j.jhazmat.2014.06.025
- C. Zhao, J. Zhou, Y. Yan, L. Yang, G. Xing, H. Li, P. Wu, M. Wang and H. Zheng, Sci. Total Environ., 765, 142795 (2021); https://doi.org/10.1016/j.scitotenv.2020.142795
- S. Bayar, Y.Ş. Yildiz, A.E. Yilmaz and A.S. Koparal, Desalination Water Treat., 52, 3047 (2014); https://doi.org/10.1080/19443994.2013.800268
- C. Zaharia, C.P. Musteret and M.A. Afrasinei, Appl. Sci., 14, 2184 (2024); https://doi.org/10.3390/app14052184
- A. Paltahe, T. Cornelius, B. Sambo, D. Christian, T. Téri, D. Rallet and A. Wahabou, Int. J. Chem., 11, 77 (2019); https://doi.org/10.5539/ijc.v11n2p77
- P.S. Khoo, R.A. Ilyas, M.N.A. Uda, S.A. Hassan, A.H. Nordin, A.S. Norfarhana, N.H. Ab Hamid, M.S.A. Rani, H. Abral, M.N.F. Norrrahim, V.F. Knight, C.L. Lee and S.A. Rafiqah, Polymers, 15, 3114 (2023); https://doi.org/10.3390/polym15143114
References
A. Bhardwaj, S. Kumar and D. Singh, Water Qual. Res. J. Canada, 58, 128 (2023); https://doi.org/10.2166/wqrj.2023.002
J. Zhao, Q. Wu, Y. Tang, J. Zhou and H. Guo, J. Leather Sci. Eng., 4, 10 (2022); https://doi.org/10.1186/s42825-022-00082-7
J. Pandit and A.K. Sharma, Environ. Ecol., 23, 1 (2024); https://doi.org/10.9734/ajee/2024/v23i10605
G. Crini, Prog. Polym. Sci., 30, 38 (2005); https://doi.org/10.1016/j.progpolymsci.2004.11.002
J. El-Gaayda, F.E. Titchou, R. Oukhrib, P.S. Yap, T. Liu, M. Hamdani and R. Ait Akbour, J. Environ. Chem. Eng., 9, 106060 (2021); https://doi.org/10.1016/j.jece.2021.106060
G. Crini and E. Lichtfouse, Environ. Chem. Lett., 17, 145 (2019); https://doi.org/10.1007/s10311-018-0785-9
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas and A.M. Mayes, Nature, 452, 301 (2008); https://doi.org/10.1038/nature06599
C.S. Lee, J. Robinson and M.F. Chong, Process Saf. Environ. Prot., 92, 489 (2014); https://doi.org/10.1016/j.psep.2014.04.010
Y.X. Zhao, B.Y. Gao, H.K. Shon, B.C. Cao and J.-H. Kim, J. Hazard. Mater., 185, 1536 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.084
A. Mishra, S. Rajani, M. Agarwal and R. Dubey, Polym. Bull., 48, 439 (2002); https://doi.org/10.1007/s00289-002-0056-5
A. Mishra, A. Yadav, M. Agarwal and S. Rajani, Colloid Polym. Sci., 282, 300 (2004); https://doi.org/10.1007/s00396-003-0895-0
Z. Steinmetz, C. Plicht, C. Buchmann, M. Knott, M. Meyer, S. Müller-Schüssele, D. Strieth, M.H. Prosenc, H. Steinmetz, H.F. Jungkunst, W.R. Thiel and M. Bundschuh, TrAC Trends Analyt. Chem., 181, 118000 (2024); https://doi.org/10.1016/j.trac.2024.118000
A.A. Gafar, M.E. Khayat, M.B.H.A. Rahim and M.Y. Shukor, Bioremed. Sci. Technol. Res., 5, 8 (2017); https://doi.org/10.54987/bstr.v5i2.357
C.Y. Teh, P.M. Budiman, K.P.Y. Shak and T.Y. Wu, Ind. Eng. Chem. Res., 55, 4363 (2016); https://doi.org/10.1021/acs.iecr.5b04703
L. Zhou, H. Zhou and X. Yang, Sep. Purif. Technol., 210, 93 (2019); https://doi.org/10.1016/j.seppur.2018.07.089
V.K. Thakur and S.I. Voicu, Carbohydr. Polym., 146, 148 (2016); https://doi.org/10.1016/j.carbpol.2016.03.030
A. Mishra, A. Yadav, M. Agarwal and M. Bajpai, React. Funct. Polym., 59, 99 (2004); https://doi.org/10.1016/j.reactfunctpolym.2003.08.008
M. Agarwal, S. Rajani, A. Mishra and J.S.P. Rai, Int. J. Polym. Mater., 52, 1049 (2003); https://doi.org/10.1080/714975900
A. Mishra, M. Agarwal and A. Yadav, Colloid Polym. Sci., 281, 164 (2003); https://doi.org/10.1007/s00396-002-0765-1
M. Agarwal, R. Srinivasan and A. Mishra, Macromol. Mater. Eng., 286, 560 (2001); https://doi.org/10.1002/1439-2054(20010901)286:9<560::AID-MAME560>3.0.CO; 2-B
D. Krentz, C. Lohmann, S. Schwarz, S. Bratskaya, T. Liebert, J. Laube, T. Heinze and W. Kulicke, Stärke, 58, 161 (2006); https://doi.org/10.1002/star.200500431
Y. Song, W. Gan, Q. Li, Y. Guo, J. Zhou and L. Zhang, Carbohydr. Polym., 86, 171 (2011); https://doi.org/10.1016/j.carbpol.2011.04.025
K. Ho, S.Y. Lau, L.H. Ting, A. Zahir, M.K. Lam, S.Y. Choy, S. Lim and T.I. Shi, Next Sustain., 5, 100083 (2025); https://doi.org/10.1016/j.nxsust.2024.100083
P. Loganathan, M. Gradzielski, H. Bustamante and S. Vigneswaran, Environ. Sci. Water Res. Technol., 6, 45 (2020); https://doi.org/10.1039/C9EW00596J
X. Jiang, Y. Li, X. Tang, J. Jiang, Q. He, Z. Xiong and H. Zheng, Environ. Sci. Pollut. Res. Int., 28, 46934 (2021); https://doi.org/10.1007/s11356-021-15299-y
S.M. Abdo, R.H. Mahmoud, M. Youssef and M.E. El-Naggar, Groundw. Sustain. Dev., 10, 100331 (2020); https://doi.org/10.1016/j.gsd.2020.100331
L. Ghimici and M. Nichifor, Carbohydr. Polym., 190, 162 (2018); https://doi.org/10.1016/j.carbpol.2018.02.075
B. Li, J. Zhao, W. Ge, W. Li and H. Yuan, J. Environ. Chem. Eng., 10, 107263 (2022); https://doi.org/10.1016/j.jece.2022.107263
S.Y. Bratskaya, A.V. Pestov, Y.G. Yatluk and V.A. Avramenko, Colloids Surf. A Physicochem. Eng. Asp., 339, 140 (2009); https://doi.org/10.1016/j.colsurfa.2009.02.013
F. Matebese, A.K. Mosai, H. Tutu and Z.R. Tshentu, Heliyon, 10, e24730 (2024); https://doi.org/10.1016/j.heliyon.2024.e24730
Z. Zhang, Y. Lu, S. Gao and S. Wu, Separations, 12, 72 (2025); https://doi.org/10.3390/separations12030072
D. Gomez-Maldonado, A.M. Reynolds, D.J. Burnett, R.J. Babu, M.N. Waters and M.S. Peresin, RSC Adv., 12, 20330 (2022); https://doi.org/10.1039/D2RA03556A
J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, IWA Publishing, edn. 2, vol. 5 (2015).
J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, IWA Publishing, vol. 15 (2016).
A.P.M. Velenturf and P. Purnell, Sustain. Prod. Consum., 27, 1437 (2021); https://doi.org/10.1016/j.spc.2021.02.018
A.B. Abdullahi, A.R. Siregar, W. Pakiding and Mahyuddin, IOP Conf. Ser. Earth Environ. Sci., 788, 012155 (2021); https://doi.org/10.1088/1755-1315/788/1/012155
M. Pivokonský, K. Novotná, L. Čermáková, R. Petříček, Jar Tests for Water Treatment Optimisation: How to Perform Jar Tests-A Hand-book, IWA Publishing, USA (2022).
E.A. López-Maldonado, M.T. Oropeza-Guzman, J.L. Jurado-Baizaval and A. Ochoa-Terán, J. Hazard. Mater., 279, 1 (2014); https://doi.org/10.1016/j.jhazmat.2014.06.025
C. Zhao, J. Zhou, Y. Yan, L. Yang, G. Xing, H. Li, P. Wu, M. Wang and H. Zheng, Sci. Total Environ., 765, 142795 (2021); https://doi.org/10.1016/j.scitotenv.2020.142795
S. Bayar, Y.Ş. Yildiz, A.E. Yilmaz and A.S. Koparal, Desalination Water Treat., 52, 3047 (2014); https://doi.org/10.1080/19443994.2013.800268
C. Zaharia, C.P. Musteret and M.A. Afrasinei, Appl. Sci., 14, 2184 (2024); https://doi.org/10.3390/app14052184
A. Paltahe, T. Cornelius, B. Sambo, D. Christian, T. Téri, D. Rallet and A. Wahabou, Int. J. Chem., 11, 77 (2019); https://doi.org/10.5539/ijc.v11n2p77
P.S. Khoo, R.A. Ilyas, M.N.A. Uda, S.A. Hassan, A.H. Nordin, A.S. Norfarhana, N.H. Ab Hamid, M.S.A. Rani, H. Abral, M.N.F. Norrrahim, V.F. Knight, C.L. Lee and S.A. Rafiqah, Polymers, 15, 3114 (2023); https://doi.org/10.3390/polym15143114