Copyright (c) 2025 Monika Dhanda Monika Dhanda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimizing Metal Doping in g-C3N4: A Comprehensive Study of Palladium and Silver Nanocomposites for Enhanced Supercapacitor Performance
Corresponding Author(s) : Monika Dhanda
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
This study extends previous work on Pd- and Ag-doped graphitic carbon nitride for advanced supercapacitor applications. Pure graphitic carbon nitride (g-C3N4, GCN) was synthesized via thermal polymerization, while metal doping was achieved by varying precursor concentrations. Comprehensive structural and morphological characterization was conducted using XRD, FT-IR and TEM. Enhanced electrochemical analyses cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) were employed to assess charge transport and storage behaviour. Among all samples, PC9 (9 mmol Pd-doped GCN) exhibited the highest specific capacitance (401.1 F/g at 10 mV/s) and the lowest charge transfer resistance (Rct = 1.10 Ω), indicating excellent redox activity and conductivity. In contrast, GCN–0.9Ag showed comparatively lower performance (195.3 F/g, Rct = 19 Ω). The study confirms that optimal doping enhances electrochemical behaviour, while excess metal induces agglomeration and reduces efficiency. The optical properties of PC9 sample were also systematically investigated, reinforcing its potential as a multifunctional, high-performance electrode material for next-generation energy storage applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Dhanda, R. Arora, M. Saini, S.P. Nehra and S. Lata, New J. Chem., 46, 14215 (2022); https://doi.org/10.1039/D2NJ02401B
- M. Dhanda, S.P. Nehra and S. Lata, Synth. Met., 286, 117046 (2022); https://doi.org/10.1016/j.synthmet.2022.117046
- Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P.L. Taberna, M. Salanne, G. Yushin and P. Simon, Mater. Today, 21, 419 (2018); https://doi.org/10.1016/j.mattod.2018.01.035
- Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, and C. Zhi, Small, 13, 1701877 (2017); https://doi.org/10.1002/smll.201701827
- J. Kowal, E. Avaroglu, F. Chamekh, A. Šenfelds, T. Thien, D. Wijaya and D.U. Sauer, J. Power Sources, 196, 573 (2011); https://doi.org/10.1016/j.jpowsour.2009.12.028
- M. Yadav, M. Dhanda, R. Arora, R. Jagdish, G. Singh and S. Lata, New J. Chem., 46, 12783 (2022); https://doi.org/10.1039/D2NJ01892F
- M. Yadav, G. Singh and S. Lata, J. Solid State Electrochem., 26, 2153 (2022); https://doi.org/10.1007/s10008-022-05216-9
- Meenu, P. Kumar and B.S. Dehiya, J. Nanosci. Technol., 5, 584 (2019); https://doi.org/10.30799/jnst.195.19050102
- M. Dhanda, R. Arora, S. Ahlawat, S.P. Nehra and S. Lata, J. Energy Storage, 52, 104740 (2022); https://doi.org/10.1016/j.est.2022.104740
- S. Lee, I.N. Ivanov, J.K. Keum and H.N. Lee, Sci. Rep., 6, 19621 (2016); https://doi.org/10.1038/srep19621
- R.B. Rakhi, D.H. Nagaraju, P. Beaujuge and H.N. Alshareef, Electrochim. Acta, 220, 601 (2016); https://doi.org/10.1016/j.electacta.2016.10.109
- Y. Zheng, J. Liu, J. Liang, M. Jaroniec and S. Z. Qiao, Energy Environ. Sci., 5, 6717 (2012); https://doi.org/10.1039/C2EE03479D
- Z. Han, N. Wang, H. Fan and S. Ai, Solid State Sci., 65, 110 (2017); https://doi.org/10.1016/j.solidstatesciences.2017.01.010
- J. Zhang, Y. Zhao, A.-L. Wu, J. Li and Y.-X. Wang, J. Fuel Chem. Technol., 4, 198 (2021); https://doi.org/10.1016/S1872-5813(21)60010-5
- M. Rabia, D. Essam, F.H. Alkallas, M. Shaban, S. Elaissi and A.B.G. Trabelsi, Micromachines, 13, 2234 (2022); https://doi.org/10.3390/mi13122234
- C. Harak, V. Kadam, R. Gavhane, S. Balgude, A. Rakshe, S. Uke, N. Brahmankar, D. Satpute, H. Pawar and S. Mardikar, RSC Adv., 14, 4917 (2024); https://doi.org/10.1039/d3ra08428k
- M. Dhanda, S.P. Nehra and S. Lata, Russ. J. Electrochem., 59, 248 (2023); https://doi.org/10.1134/S1023193523030047
- M. Dhanda, R. Arora, M. Yadav, S. Ahlawat, S. Dahiya, D.R. Paul, G. Jha, G. Singh, S.P. Nehra and S. Lata, Mater. Sci. Eng. B, 304, 117344 (2024); https://doi.org/10.1016/j.mseb.2024.117344
- J. Zhang, L. Chen, Y. Wang, S. Cai, H. Yang, H. Yu, F. Ding, C. Huang and X. Liu, Nanomaterials, 8, 1020 (2018); https://doi.org/10.3390/nano8121020
- E. Amichai and N. Kronfeld-Schor, Sci. Rep., 9, 11052 (2019); https://doi.org/10.1038/s41598-019-47544-3
- S. Yao, S. Xue, S. Peng, M. Jing, X. Qian, X. Shen, T. Li and Y. Wang, J. Mater. Sci. Mater. Electron., 29, 17921 (2018); https://doi.org/10.1007/s10854-018-9906-2
- K. Katsumata, R. Motoyoshi, N. Matsushita and K. Okada, J. Hazard. Mater., 260, 475 (2013); https://doi.org/10.1016/j.jhazmat.2013.05.058
- A. Kharlamov, M. Bondarenko, G. Kharlamova and N. Gubareni, Diamond Rel. Mater., 66, 16 (2016); https://doi.org/10.1016/j.diamond.2016.03.012
- G. Ren, R. Zhang and Z. Fan, Appl. Surf. Sci., 441, 466 (2018); https://doi.org/10.1016/j.apsusc.2018.02.059
- R. Basu, S. Ghosh, S. Bera, A. Das and S. Dhara, Sci. Rep., 9, 40225 (2019); https://doi.org/10.1038/s41598-019-40225-1
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, Chem. Soc. Rev., 44, 7484 (2015); https://doi.org/10.1039/C5CS00303B
- J. Ma, X.-Y. Tao, S.-X. Zhou, X.-Z. Song, Lin-Guo, Yao-Wang, Y.-B. Zhu, L.-T. Guo, Z.-S. Liu, H.-L. Fan and X.-Y. Wei, J. Electroanal. Chem., 835, 346 (2019); https://doi.org/10.1016/j.jelechem.2018.12.025
- R. Arora, M. Dhanda, M. Yadav, R. Malik, P. Pahuja, S. Ahlawat, V.S. Rao, S.P. Nehra and S. Lata, Solid State Ion., 403, 116402 (2023); https://doi.org/10.1016/j.ssi.2023.116402
- M. Dhanda, R. Arora, M. Yadav, P. Pahuja, S. Ahlawat, S.P. Nehra and S. Lata, Mater. Sci. Eng. B, 300, 117055 (2024); https://doi.org/10.1016/j.mseb.2023.117055
- M. Yadav, M. Dhanda, R. Arora, S. Ahlawat, G. Singh, K. Nehra, and S. Lata, Mater. Sci. Eng. B, 297, 116719 (2023); https://doi.org/10.1016/j.mseb.2023.116719
- M. Manisha, M. Dhanda, R. Arora, A.S. Reddy, S. Lata and A. Sharma, J. Alloys Compd., 955, 169738 (2023); https://doi.org/10.1016/j.jallcom.2023.169738
- G. Dong, H. Fan, K. Fu, L. Ma, S. Zhang, M. Zhang, J. Ma and W. Wang, Compos., Part B Eng., 162, 369 (2019); https://doi.org/10.1016/j.compositesb.2018.12.098
- Y. Zhou, L. Sun, D. Wu, X. Li, J. Li, P. Huo, H. Wang and Y. Yan, J. Alloys Compd., 817, 152707 (2020); https://doi.org/10.1016/j.jallcom.2019.152707
- D.P. Ojha, H.P. Karki, J. Song and H.J. Kim, Chem. Phys. Lett., 712, 83 (2018); https://doi.org/10.1016/j.cplett.2018.09.070
- S. Sanati and Z. Rezvani, Chem. Eng. J., 362, 743 (2019); https://doi.org/10.1016/j.cej.2019.01.081.
- S. Sun, L. Guo, X. Chang, Y. Yu and X. Zhai, Mater. Lett., 236, 558 (2019); https://doi.org/10.1016/j.matlet.2018.11.001
- X. Chen, X. Zhu, Y. Xiao and X. Yang, J. Electroanal. Chem., 743, 99 (2015); https://doi.org/10.1016/j.jelechem.2015.02.004
- Y. Zhao, L. Xu, S. Huang, J. Bao, J. Qiu, J. Lian, L. Xu, Y. Huang, Y. Xu and H. Li, J. Alloys Compd., 702, 178 (2017); https://doi.org/10.1016/j.jallcom.2017.01.125
- C.J. Verma, A.S. Keshari, P. Dubey and R. Prakash, Vacuum, 177, 109363 (2020); https://doi.org/10.1016/j.vacuum.2020.109363
- B. Palanivel, S. Mudisoodum perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan and M. Alagiri, Appl. Surf. Sci., 498, 143807 (2019); https://doi.org/10.1016/j.apsusc.2019.143807
- A.Y. Chen, T.T. Zhang, Y.J. Qiu, D. Wang, P. Wang, H.J. Li, Y. Li, J.H. Yang, X.Y. Wang and X.F. Xie, Electrochim. Acta, 294, 260 (2019); https://doi.org/10.1016/j.electacta.2018.10.106
- D.F. Wang, Y.Z. Wu, X.H. Yan, J.J. Wang, Q. Wang, C. Zhou, X.X. Yuan, J.M. Pan and X.N. Cheng, MRS Commun., 9, 719 (2019); https://doi.org/10.1557/mrc.2019.25
References
M. Dhanda, R. Arora, M. Saini, S.P. Nehra and S. Lata, New J. Chem., 46, 14215 (2022); https://doi.org/10.1039/D2NJ02401B
M. Dhanda, S.P. Nehra and S. Lata, Synth. Met., 286, 117046 (2022); https://doi.org/10.1016/j.synthmet.2022.117046
Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P.L. Taberna, M. Salanne, G. Yushin and P. Simon, Mater. Today, 21, 419 (2018); https://doi.org/10.1016/j.mattod.2018.01.035
Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, and C. Zhi, Small, 13, 1701877 (2017); https://doi.org/10.1002/smll.201701827
J. Kowal, E. Avaroglu, F. Chamekh, A. Šenfelds, T. Thien, D. Wijaya and D.U. Sauer, J. Power Sources, 196, 573 (2011); https://doi.org/10.1016/j.jpowsour.2009.12.028
M. Yadav, M. Dhanda, R. Arora, R. Jagdish, G. Singh and S. Lata, New J. Chem., 46, 12783 (2022); https://doi.org/10.1039/D2NJ01892F
M. Yadav, G. Singh and S. Lata, J. Solid State Electrochem., 26, 2153 (2022); https://doi.org/10.1007/s10008-022-05216-9
Meenu, P. Kumar and B.S. Dehiya, J. Nanosci. Technol., 5, 584 (2019); https://doi.org/10.30799/jnst.195.19050102
M. Dhanda, R. Arora, S. Ahlawat, S.P. Nehra and S. Lata, J. Energy Storage, 52, 104740 (2022); https://doi.org/10.1016/j.est.2022.104740
S. Lee, I.N. Ivanov, J.K. Keum and H.N. Lee, Sci. Rep., 6, 19621 (2016); https://doi.org/10.1038/srep19621
R.B. Rakhi, D.H. Nagaraju, P. Beaujuge and H.N. Alshareef, Electrochim. Acta, 220, 601 (2016); https://doi.org/10.1016/j.electacta.2016.10.109
Y. Zheng, J. Liu, J. Liang, M. Jaroniec and S. Z. Qiao, Energy Environ. Sci., 5, 6717 (2012); https://doi.org/10.1039/C2EE03479D
Z. Han, N. Wang, H. Fan and S. Ai, Solid State Sci., 65, 110 (2017); https://doi.org/10.1016/j.solidstatesciences.2017.01.010
J. Zhang, Y. Zhao, A.-L. Wu, J. Li and Y.-X. Wang, J. Fuel Chem. Technol., 4, 198 (2021); https://doi.org/10.1016/S1872-5813(21)60010-5
M. Rabia, D. Essam, F.H. Alkallas, M. Shaban, S. Elaissi and A.B.G. Trabelsi, Micromachines, 13, 2234 (2022); https://doi.org/10.3390/mi13122234
C. Harak, V. Kadam, R. Gavhane, S. Balgude, A. Rakshe, S. Uke, N. Brahmankar, D. Satpute, H. Pawar and S. Mardikar, RSC Adv., 14, 4917 (2024); https://doi.org/10.1039/d3ra08428k
M. Dhanda, S.P. Nehra and S. Lata, Russ. J. Electrochem., 59, 248 (2023); https://doi.org/10.1134/S1023193523030047
M. Dhanda, R. Arora, M. Yadav, S. Ahlawat, S. Dahiya, D.R. Paul, G. Jha, G. Singh, S.P. Nehra and S. Lata, Mater. Sci. Eng. B, 304, 117344 (2024); https://doi.org/10.1016/j.mseb.2024.117344
J. Zhang, L. Chen, Y. Wang, S. Cai, H. Yang, H. Yu, F. Ding, C. Huang and X. Liu, Nanomaterials, 8, 1020 (2018); https://doi.org/10.3390/nano8121020
E. Amichai and N. Kronfeld-Schor, Sci. Rep., 9, 11052 (2019); https://doi.org/10.1038/s41598-019-47544-3
S. Yao, S. Xue, S. Peng, M. Jing, X. Qian, X. Shen, T. Li and Y. Wang, J. Mater. Sci. Mater. Electron., 29, 17921 (2018); https://doi.org/10.1007/s10854-018-9906-2
K. Katsumata, R. Motoyoshi, N. Matsushita and K. Okada, J. Hazard. Mater., 260, 475 (2013); https://doi.org/10.1016/j.jhazmat.2013.05.058
A. Kharlamov, M. Bondarenko, G. Kharlamova and N. Gubareni, Diamond Rel. Mater., 66, 16 (2016); https://doi.org/10.1016/j.diamond.2016.03.012
G. Ren, R. Zhang and Z. Fan, Appl. Surf. Sci., 441, 466 (2018); https://doi.org/10.1016/j.apsusc.2018.02.059
R. Basu, S. Ghosh, S. Bera, A. Das and S. Dhara, Sci. Rep., 9, 40225 (2019); https://doi.org/10.1038/s41598-019-40225-1
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, Chem. Soc. Rev., 44, 7484 (2015); https://doi.org/10.1039/C5CS00303B
J. Ma, X.-Y. Tao, S.-X. Zhou, X.-Z. Song, Lin-Guo, Yao-Wang, Y.-B. Zhu, L.-T. Guo, Z.-S. Liu, H.-L. Fan and X.-Y. Wei, J. Electroanal. Chem., 835, 346 (2019); https://doi.org/10.1016/j.jelechem.2018.12.025
R. Arora, M. Dhanda, M. Yadav, R. Malik, P. Pahuja, S. Ahlawat, V.S. Rao, S.P. Nehra and S. Lata, Solid State Ion., 403, 116402 (2023); https://doi.org/10.1016/j.ssi.2023.116402
M. Dhanda, R. Arora, M. Yadav, P. Pahuja, S. Ahlawat, S.P. Nehra and S. Lata, Mater. Sci. Eng. B, 300, 117055 (2024); https://doi.org/10.1016/j.mseb.2023.117055
M. Yadav, M. Dhanda, R. Arora, S. Ahlawat, G. Singh, K. Nehra, and S. Lata, Mater. Sci. Eng. B, 297, 116719 (2023); https://doi.org/10.1016/j.mseb.2023.116719
M. Manisha, M. Dhanda, R. Arora, A.S. Reddy, S. Lata and A. Sharma, J. Alloys Compd., 955, 169738 (2023); https://doi.org/10.1016/j.jallcom.2023.169738
G. Dong, H. Fan, K. Fu, L. Ma, S. Zhang, M. Zhang, J. Ma and W. Wang, Compos., Part B Eng., 162, 369 (2019); https://doi.org/10.1016/j.compositesb.2018.12.098
Y. Zhou, L. Sun, D. Wu, X. Li, J. Li, P. Huo, H. Wang and Y. Yan, J. Alloys Compd., 817, 152707 (2020); https://doi.org/10.1016/j.jallcom.2019.152707
D.P. Ojha, H.P. Karki, J. Song and H.J. Kim, Chem. Phys. Lett., 712, 83 (2018); https://doi.org/10.1016/j.cplett.2018.09.070
S. Sanati and Z. Rezvani, Chem. Eng. J., 362, 743 (2019); https://doi.org/10.1016/j.cej.2019.01.081.
S. Sun, L. Guo, X. Chang, Y. Yu and X. Zhai, Mater. Lett., 236, 558 (2019); https://doi.org/10.1016/j.matlet.2018.11.001
X. Chen, X. Zhu, Y. Xiao and X. Yang, J. Electroanal. Chem., 743, 99 (2015); https://doi.org/10.1016/j.jelechem.2015.02.004
Y. Zhao, L. Xu, S. Huang, J. Bao, J. Qiu, J. Lian, L. Xu, Y. Huang, Y. Xu and H. Li, J. Alloys Compd., 702, 178 (2017); https://doi.org/10.1016/j.jallcom.2017.01.125
C.J. Verma, A.S. Keshari, P. Dubey and R. Prakash, Vacuum, 177, 109363 (2020); https://doi.org/10.1016/j.vacuum.2020.109363
B. Palanivel, S. Mudisoodum perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan and M. Alagiri, Appl. Surf. Sci., 498, 143807 (2019); https://doi.org/10.1016/j.apsusc.2019.143807
A.Y. Chen, T.T. Zhang, Y.J. Qiu, D. Wang, P. Wang, H.J. Li, Y. Li, J.H. Yang, X.Y. Wang and X.F. Xie, Electrochim. Acta, 294, 260 (2019); https://doi.org/10.1016/j.electacta.2018.10.106
D.F. Wang, Y.Z. Wu, X.H. Yan, J.J. Wang, Q. Wang, C. Zhou, X.X. Yuan, J.M. Pan and X.N. Cheng, MRS Commun., 9, 719 (2019); https://doi.org/10.1557/mrc.2019.25