Copyright (c) 2025 SIVAKAMAVALLI JEYACHANDRAN, Shreya, Balaji

This work is licensed under a Creative Commons Attribution 4.0 International License.
From Pollution to Solution: Scalable Approaches to Microplastic Degradation and Sustainability: A Review
Corresponding Author(s) : Sivakamavalli Jeyachandran
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
In 21st century, it is critical for sustainable development due to natural resources depletion and the expansion of new territories, leading to increased urbanization, environmental risks and the creation of large-scale economic systems. Microplastics originating from industries, transportation and other human activities, have become a significant global aquatic pollutant, posing serious threats to marine life. Traditional methods for removing microplastics have proven ineffective due to their small size, prompting the exploration of new degradation strategies. This review highlights various approaches for microplastic degradation, including physical methods like density gradient separation, filtration systems, reverse osmosis and magnetic separation; chemical methods involving acid-alkali treatment, chemical oxidation and photocatalysis; and biological methods focusing on bioremediation through bioaugmentation and biostimulation. While these methods offer partial degradation of microplastics, often producing valuable byproducts on a small scale, they have limitations. To address these shortcomings, innovative techniques such as adsorption on algae, biochar and photocatalytic micromotors are being developed, reflecting the latest research trends in microplastic degradation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. N. Issac and B. Kandasubramanian, Environ Sci Pollut Res Int., 28, 19544 (2021); https://doi.org/10.1007/s11356-021-13184-2
- S. Khurana, S. Ali, A.K. Srivastava, A. Singh, H. Agarwal, R. Chauhan, N.C. Joshi, L. Dufossé and A. Chauhan, J. Hazard. Mater. Adv., 19, 100777 (2025); https://doi.org/10.1016/j.hazadv.2025.100777
- A.L. Andrady, Mar. Pollut. Bull., 119, 12 (2017); https://doi.org/10.1016/j.marpolbul.2017.01.082
- S. Sharma, S. Basu, N.P. Shetti, M.N. Nadagouda and T.M. Aminabhavi, Chem. Eng. J., 408, 127317 (2021); https://doi.org/10.1016/j.cej.2020.127317
- R.H. Waring, R.M. Harris and S.C. Mitchell, Maturitas, 115, 64 (2018); https://doi.org/10.1016/j.maturitas.2018.06.010
- J. Yuan, J. Ma, Y. Sun, T. Zhou, Y. Zhao and F. Yu, Sci. Total Environ., 715, 136968 (2020); https://doi.org/10.1016/j.scitotenv.2020.136968
- L. Hou, D. Kumar, C.G. Yoo, I. Gitsov and E.L.-W. Majumder, Chem. Eng. J., 406, 126715 (2021); https://doi.org/10.1016/j.cej.2020.126715
- A. Lusher, P. Hollman and J. Mendoza-Hill, Microplastics in Fisheries and Aquaculture: Status of Knowledge pn Their Occurrence and Implications for Aquatic Organisms and Food Safety, Fisheries and Aquaculture Technical Paper No., 615 FAO, Rome (2017).
- Y. Zhang, H. Jiang, K. Bian, H. Wang and C. Wang, J. Environ. Chem. Eng., 9, 105463 (2021); https://doi.org/10.1016/j.jece.2021.105463
- S. Lechthaler, K. Waldschläger, G. Stauch and H. Schüttrumpf, Environments, 7, 73 (2020); https://doi.org/10.3390/environments7100073ss
- W. Zhang, K. Song, R. Ding, H. Han, L. Yao, M. Ji, Z. Chen, H. Yu, C. Wu and T. Fang, J. Hazard. Mater., 419, 126429 (2021); https://doi.org/10.1016/j.jhazmat.2021.126429
- C.G. Bannick, R. Szewzyk, M. Ricking, S. Schniegler, N. Obermaier, A.K. Barthel, K. Altmann, P. Eisentraut and U. Braun, Water Res., 149, 650 (2019); https://doi.org/10.1016/j.watres.2018.10.045
- Q. Abbas, B. Yousaf, Amina, M.U. Ali, M.A.M. Munir, A. El-Naggar, J. Rinklebe and M. Naushad, Environ. Int., 138, 105646 (2020); https://doi.org/10.1016/j.envint.2020.105646
- S. Farrokhpay, Adv. Colloid Interface Sci., 151, 24 (2009); https://doi.org/10.1016/j.cis.2009.07.004
- T. Poerio, E. Piacentini and R. Mazzei, Molecules, 24, 4148 (2019); https://doi.org/10.3390/molecules24224148
- L. Li, G. Xu, H. Yu and J. Xing, Sci. Total Environ., 627, 332 (2018); https://doi.org/10.1016/j.scitotenv.2018.01.239
- X. Yue, Y. Yang, X. Li, J. Ren, Z. Zhou, Y. Zhang and H. Yu, J. Environ. Chem. Eng., 9, 106803 (2021); https://doi.org/10.1016/j.jece.2021.106803
- B. Ma, W. Xue, Y. Ding, C. Hu, H. Liu and J. Qu, J. Environ. Sci., 78, 267 (2019); https://doi.org/10.1016/j.jes.2018.10.006
- M. Asadollahi, D. Bastani and S.A. Musavi, Desalination, 420, 330 (2017); https://doi.org/10.1016/j.desal.2017.05.027
- S. Ziajahromi, P.A. Neale, L. Rintoul and F.D.L. Leusch, Water Res., 112, 93 (2017); https://doi.org/10.1016/j.watres.2017.01.042
- Y. Zhang, Y. Zhao, H. Chu, B. Dong and X. Zhou, Chin. Sci. Bull., 59, 247 (2014); https://doi.org/10.1007/s11434-013-0048-x
- J. Bayo, J. López-Castellanos and S. Olmos, Mar. Pollut. Bull., 156, 111211 (2020); https://doi.org/10.1016/j.marpolbul.2020.111211
- J. Grbic, B. Nguyen, E. Guo, J.B. You, D. Sinton and C.M. Rochman, Environ. Sci. Technol. Lett., 6, 68 (2019); https://doi.org/10.1021/acs.estlett.8b00671
- X. Shi, X. Zhang, W. Gao, Y. Zhang and D. He, Sci. Total Environ., 802, 149838 (2022); https://doi.org/10.1016/j.scitotenv.2021.149838
- L.M.A. Martin, J. Sheng, P.V. Zimba, L. Zhu, O.O. Fadare, C. Haley, M. Wang, T.D. Phillips, J. Conkle and W. Xu, Nanomaterials, 12, 2348 (2022); https://doi.org/10.3390/nano12142348
- Y. Tang, S. Zhang, Y. Su, D. Wu, Y. Zhao and B. Xie, Chem. Eng. J., 406, 126804 (2021); https://doi.org/10.1016/j.cej.2020.126804
- S. Lechthaler, L. Hildebrandt, G. Stauch, and H. Schüttrumpf, Anal. Methods, 12, 5128 (2020); https://doi.org/10.1039/D0AY01574A
- B. Zhou, J. Wang, H. Zhang, H. Shi, Y. Fei, S. Huang, Y. Tong, D. Wen, Y. Luo and D. Barceló, J. Hazard. Mater., 388, 121814 (2020); https://doi.org/10.1016/j.jhazmat.2019.121814
- S. Saisinchai, Eng. J., 18, 45 (2014); https://doi.org/10.4186/ej.2014.18.1.45
- B. Bolto and Z. Xie, Processes, 7, 374 (2019); https://doi.org/10.3390/pr7060374
- J. Talvitie, A. Mikola, A. Koistinen and O. Setälä, Water Res., 123, 401 (2017); https://doi.org/10.1016/j.watres.2017.07.005
- A.M. Elgarahy, A. Akhdhar and K.Z. Elwakeel, J. Environ. Chem. Eng., 9, 106224 (2021); https://doi.org/10.1016/j.jece.2021.106224
- M. Padervand, E. Lichtfouse, D. Robert and C. Wang, Environ. Chem. Lett., 18, 807 (2020); https://doi.org/10.1007/s10311-020-00983-1
- T.A. Lastovina and A.P. Budnyk, J. Water Process Eng., 43, 102209 (2021); https://doi.org/10.1016/j.jwpe.2021.102209
- P.L. Corcoran, Degradation of Microplastics in the Environment, In: Handbook of Microplastics in the Environment, eds.: T. Rocha-Santos, M.F. Costa and C. Mouneyrac, Springer International Publishing, Cham, pp. 531-542 (2022).
- S. Klein, I.K. Dimzon, J. Eubeler and T.P. Knepper, eds.: M. Wagner and S. Lambert, Analysis, Occurrence and Degradation of Microplastics in the Aqueous Environment, In: Freshwater Microplastics, The Hand-book of Environmental Chemistry, Springer International Publishing, Cham, pp. 51-67 (2018).
- K. Munno, P.A. Helm, D.A. Jackson, C. Rochman and A. Sims, Environ. Toxicol. Chem., 37, 91 (2017); https://doi.org/10.1002/etc.3935
- K.W. Meereboer, M. Misra and A.K. Mohanty, Green Chem., 22, 5519 (2020); https://doi.org/10.1039/D0GC01647K
- M. Cole, H. Webb, P.K. Lindeque, E.S. Fileman, C. Halsband and T.S. Galloway, Sci. Rep., 4, 4528 (2014); https://doi.org/10.1038/srep04528
- K. Enders, R. Lenz, C.A. Stedmon and T.G. Nielsen, Mar. Pollut. Bull., 100, 78 (2015); https://doi.org/10.1016/j.marpolbul.2015.09.027
- F. Collard, B. Gilbert, G. Eppe, E. Parmentier and K. Das, Arch. Environ. Contam. Toxicol., 69, 331 (2015); https://doi.org/10.1007/s00244-015-0221-0
- I. Gdara, J. Lawler, A. Staines and S. O’Neill, The State of the Art on the Potential Human Health Impacts of Microplastics and Nanoplastics, EPA Research Document 361, Dublin: Environmental Protection Agency (2021).
- O.M. Rodríguez-Narvaez, A. Goonetilleke, L. Perez and E.R. Bandala, Chem. Eng. J., 414, 128692 (2021); https://doi.org/10.1016/j.cej.2021.128692
- A.R. Lado Ribeiro, N.F.F. Moreira, G. Li Puma and A.M.T. Silva, Chem. Eng. J., 363, 155 (2019); https://doi.org/10.1016/j.cej.2019.01.080
- H. Luo, C. Liu, D. He, J. Xu, J. Sun, J. Li and X. Pan, J. Hazard. Mater., 423, 126915 (2022); https://doi.org/10.1016/j.jhazmat.2021.126915
- K. Zhu, H. Jia, Y. Sun, Y. Dai, C. Zhang, X. Guo, T. Wang and L. Zhu, Water Res., 173, 115564 (2020); https://doi.org/10.1016/j.watres.2020.115564
- A.B. Silva, A.S. Bastos, C.I.L. Justino, J.P. da Costa, A.C. Duarte and T.A.P. Rocha-Santos, Anal. Chim. Acta, 1017, 1 (2018); https://doi.org/10.1016/j.aca.2018.02.043
- L.M. Matuana, S. Jin and N.M. Stark, Polym. Degrad. Stab., 96, 97 (2011); https://doi.org/10.1016/j.polymdegradstab.2010.10.003
- R.A. Naik, L.S. Rowles III, A.I. Hossain, M. Yen, R.M. Aldossary, O.G. Apul, J. Conkle and N.B. Saleh, Sci. Total Environ., 736, 139690 (2020); https://doi.org/10.1016/j.scitotenv.2020.139690
- W. Perren, A. Wojtasik and Q. Cai, ACS Omega, 3, 3357 (2018); https://doi.org/10.1021/acsomega.7b02037
- M. Kiendrebeogo, M.R. Karimi Estahbanati, A. Khosravanipour Mostafazadeh, P. Drogui and R.D. Tyagi, Environ. Pollut., 269, 116168 (2021); https://doi.org/10.1016/j.envpol.2020.116168
- V.K. Gaur, S. Gupta, P. Sharma, P. Gupta, S. Varjani, J.K. Srivastava, J.-S. Chang and X.-T. Bui, Curr. Pollut. Rep., 8, 30 (2022); https://doi.org/10.1007/s40726-021-00210-7
- I.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H. Gracher Riella, M.C.V.M. Starling and A.G. Trovó, Chem. Eng. J., 424, 130282 (2021); https://doi.org/10.1016/j.cej.2021.130282
- A. Debroy, N. George and G. Mukherjee, J. Chem. Technol. Biotechnol., (2021); https://doi.org/10.1002/jctb.6978
- H.L. Davies, H. Robb, K.D. Cox, G.A. Covernton, T.M. Eastham, H.J. Alexander and F. Juanes, J. Exp. Marine Biol. Ecol., 542, 151589 (2021); https://doi.org/10.1016/j.jembe.2021.151589
- S. Elangovan, S.B.S. Pandian and S.J.G. Joshi, eds.: P.K. Arora, Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation, In: Microbial Metabolism of Xenobiotic Compounds, Singapore: Springer, pp. 165-188 (2019).
- H.K. Karapanagioti and I.K. Kalavrouziotis, Microplastics in Water and Wastewater. IWA Publishing, USA (2019).
- C. Tu, Y. Teng, Y. Luo, X. Li, X. Sun, Z. Li, W. Liu and P. Christie, J. Hazard. Mater., 186, 1438 (2011); https://doi.org/10.1016/j.jhazmat.2010.12.008
- G.O. Adams, P.T. Fufeyin, S.E. Okoro and I. Ehinomen, Int. J. Environ. Bioremediat. Biodegrad., 3, 28 (2015); https://doi.org/10.12691/ijebb-3-1-5
- M. Tyagi, M.M.R. da Fonseca and C.C.C.R. de Carvalho, Biodegradation, 22, 231 (2011); https://doi.org/10.1007/s10532-010-9394-4
- S. Habib, A. Iruthayam, M.Y. Abd Shukor, S.A. Alias, J. Smykla and N.A. Yasid, Polymers, 12, 2616 (2020); https://doi.org/10.3390/polym12112616
- M.R. Pikoli, P. Astuti, F.A. Rahmah, A.F. Sari and N.A. Solihat, Chiang Mai Univ. J. Sci., 49, 1 (2022); https://doi.org/10.12982/CMUJNS.2022.005
- K. Wojtowicz and T. Steliga, Nafta-Gaz, 76, 507 (2020); https://doi.org/10.18668/NG.2020.08.03.
- T. Steliga, K. Wojtowicz, P. Kapusta and J. Brzeszcz, Molecules, 25, 709 (2020); https://doi.org/10.3390/molecules25030709
- A.V.B. Reddy, M. Moniruzzaman and T.M. Aminabhavi, Chem. Eng. J., 358, 1186 (2019); https://doi.org/10.1016/j.cej.2018.09.205
- S.-Y. Chung, M. Maeda, E. Song, K. Horikoshij and T. Kudo, Biosci. Biotechnol. Biochem., 58, 2111 (1994); https://doi.org/10.1271/bbb.58.2111
- Y. Liang, R. Meggo, D. Hu, J.L. Schnoor and T.E. Mattes, Ecol. Eng., 71, 215 (2014); https://doi.org/10.1016/j.ecoleng.2014.07.046
- I. Sierra, J.L. Valera, M.L. Marina and F. Laborda, Chemosphere, 53, 609 (2003); https://doi.org/10.1016/S0045-6535(03)00418-1
- J.D. Moody, D.R. Doerge, J.P. Freeman and C.E. Cerniglia, Appl. Microbiol. Biotechnol., 58, 364 (2002); https://doi.org/10.1007/s00253-001-0878-3
- S. Murínová and K. Dercová, Water Air Soil Pollut., 225, 1980 (2014); https://doi.org/10.1007/s11270-014-1980-3
- S. Zorádová, H. Dudášová, L. Lukáčová, K. Dercová and M. Čertík, Int. Biodeterior. Biodegradation, 65, 1019 (2011); https://doi.org/10.1016/j.ibiod.2011.03.012
- H. Wang, J. Hu, K. Xu, X. Tang, X. Xu and C. Shen, Biodegradation, 29, 1 (2018); https://doi.org/10.1007/s10532-017-9809-6
- H.J. Jeon and M.N. Kim, Int. Biodeterior. Biodegradation, 115, 244 (2016); https://doi.org/10.1016/j.ibiod.2016.08.025
- K. Bano, M. Kuddus, M. Rehan Zaheer and R. Rehan Zaheer, Turk Biyokim. Derg., 44, 344 (2019); https://doi.org/10.1515/tjb-2018-0207
- H.S. Auta, C.U. Emenike and S.H. Fauziah, Environ. Pollut., 231, 1552 (2017); https://doi.org/10.1016/j.envpol.2017.09.043
- J. Zhang, D. Gao, Q. Li, Y. Zhao, L. Li, H. Lin, Q. Bi and Y. Zhao, Sci. Total Environ., 704, 135931 (2020); https://doi.org/10.1016/j.scitotenv.2019.135931
- R. Sangeetha Devi, V. Rajesh Kannan, D. Nivas, K. Kannan, S. Chandru and A. Robert Antony, Mar. Pollut. Bull., 96, 32 (2015); https://doi.org/10.1016/j.marpolbul.2015.05.050
- A. Paço, K. Duarte, J.P. da Costa, P.S.M. Santos, R. Pereira, M.E. Pereira, A.C. Freitas, A.C. Duarte and T.A.P. Rocha-Santos, Sci. Total Environ., 586, 10 (2017); https://doi.org/10.1016/j.scitotenv.2017.02.017
- M.C. Krueger, U. Hofmann, M. Moeder and D. Schlosser, PLoS One, 10, e0131773 (2015); https://doi.org/10.1371/journal.pone.0131773
- M.T. El-Sayed, G.H. Rabie and E.A. Hamed, Environ. Dev. Sustain., 23, 14556 (2021); https://doi.org/10.1007/s10668-021-01258-7
- S. Raut, S. Raut, M. Sharma, C. Srivastav, B. Adhikari and S.K. Sen, Indian J. Microbiol., 55, 258 (2015); https://doi.org/10.1007/s12088-015-0522-z
- T. Volke-Sepúlveda, G. Saucedo-Castaneda, M. Gutierrez-Rojas, A. Manzur and E. Favela-Torres, J. Appl. Polym. Sci., 83, 305 (2002); https://doi.org/10.1002/app.2245
- A.R. Cowan, C.M. Costanzo, R. Benham, E.J. Loveridge and S.C. Moody, J. Appl. Microbiol., 132, 78 (2022); https://doi.org/10.1111/jam.15203
- N. Afianti, A. Rachman, A. Hatmanti, D. Yogaswara, M. Anggiani, N. Fitriya and Y. Darmayati, J. Ecol. Eng., 23, 261 (2022); https://doi.org/10.12911/22998993/145463
- J.Y. Cho, S. Lee Park, H.-J. Lee, S.H. Kim, M.J. Suh, S. Ham, S.K. Bhatia, R. Gurav, S.-H. Park, K. Park, D. Yoo and Y.-H. Yang, Chemosphere, 283, 131172 (2021); https://doi.org/10.1016/j.chemosphere.2021.131172
- L. Ren, G. Wang, Y. Huang, J. Guo, C. Li, Y. Jia, S. Chen, J.L. Zhou and H. Hu, Sci. Total Environ., 791, 148303 (2021); https://doi.org/10.1016/j.scitotenv.2021.148303
- A. Delacuvellerie, V. Cyriaque, S. Gobert, S. Benali and R. Wattiez, J. Hazard. Mater., 380, 120899 (2019); https://doi.org/10.1016/j.jhazmat.2019.120899
- D. Hadad, S. Geresh and A. Sivan, J. Appl. Microbiol., 98, 1093 (2005); https://doi.org/10.1111/j.1365-2672.2005.02553.x
- A.O. Azghani, E.J. Miller and B.T. Peterson, Lung, 178, 261 (2000); https://doi.org/10.1007/s004080000031
- M.I. Ali, S. Ahmed, I. Javed, N. Ali, N. Atiq, A. Hameed and G. Robson, Int. J. Environ. Sci. Technol., 11, 339 (2014); https://doi.org/10.1007/s13762-013-0220-5
- S.H. Joo, Y. Liang, M. Kim, J. Byun and H. Choi, Environ. Challenges, 3, 100042 (2021); https://doi.org/10.1016/j.envc.2021.100042
- K.B. Sundbæk, I.D.W. Koch, C.G. Villaro, N.S. Rasmussen, S.L. Holdt and N.B. Hartmann, J. Appl. Phycol., 30, 2923 (2018); https://doi.org/10.1007/s10811-018-1472-8
- T. Atugoda, H. Piyumali, S. Liyanage, K. Mahatantila and M. Vithanage, eds.: T. Rocha‑Santos, M.F. Costa and C. Mouneyrac, Fate and Behavior of Microplastics in Freshwater Systems, In: Handbook of Microplastics in the Environment, Springer Nature, pp. 1–31 (2020).
- A. Bellingeri, E. Bergami, G. Grassi, C. Faleri, P. Redondo-Hasselerharm, A.A. Koelmans and I. Corsi, Aquat. Toxicol., 210, 179 (2019); https://doi.org/10.1016/j.aquatox.2019.02.022
- A. Halder and Y. Sun, Biosens. Bioelectron., 139, 111334 (2019); https://doi.org/10.1016/j.bios.2019.111334
- W. Liu, X. Chen, X. Lu, J. Wang, Y. Zhang and Z. Gu, Adv. Funct. Mater., 30, 2003195 (2020); https://doi.org/10.1002/adfm.202003195
- Z. Wang, M. Sedighi and A. Lea-Langton, Water Res., 184, 116165 (2020); https://doi.org/10.1016/j.watres.2020.116165
- Z.U. Zango, N.S. Sambudi, K. Jumbri, A. Ramli, N.H.H. Abu Bakar, B. Saad, M.N.H. Rozaini, H.A. Isiyaka, A.M. Osman and A. Sulieman, Water, 12, 2921 (2020); https://doi.org/10.3390/w12102921
- S. Joseph, C.I. Kammann, J.G. Shepherd, P. Conte, H.-P. Schmidt, N. Hagemann, A.M. Rich, C.E. Marjo, J. Allen, P. Munroe, D.R.G. Mitchell, S. Donne, K. Spokas and E.R. Graber, Sci. Total Environ., 618, 1210 (2018); https://doi.org/10.1016/j.scitotenv.2017.09.200
- V. Siipola, S. Pflugmacher, H. Romar, L. Wendling and P. Koukkari, Appl. Sci., 10, 788 (2020); https://doi.org/10.3390/app10030788
- J. Wang, C. Sun, Q.-X. Huang, Y. Chi and J.-H. Yan, J. Hazard. Mater., 419, 126486 (2021); https://doi.org/10.1016/j.jhazmat.2021.126486
- S. Ye, M. Cheng, G. Zeng, X. Tan, H. Wu, J. Liang, M. Shen, B. Song, J. Liu, H. Yang and Y. Zhang, Water Res., 179, 115876 (2020); https://doi.org/10.1016/j.watres.2020.115876
References
M. N. Issac and B. Kandasubramanian, Environ Sci Pollut Res Int., 28, 19544 (2021); https://doi.org/10.1007/s11356-021-13184-2
S. Khurana, S. Ali, A.K. Srivastava, A. Singh, H. Agarwal, R. Chauhan, N.C. Joshi, L. Dufossé and A. Chauhan, J. Hazard. Mater. Adv., 19, 100777 (2025); https://doi.org/10.1016/j.hazadv.2025.100777
A.L. Andrady, Mar. Pollut. Bull., 119, 12 (2017); https://doi.org/10.1016/j.marpolbul.2017.01.082
S. Sharma, S. Basu, N.P. Shetti, M.N. Nadagouda and T.M. Aminabhavi, Chem. Eng. J., 408, 127317 (2021); https://doi.org/10.1016/j.cej.2020.127317
R.H. Waring, R.M. Harris and S.C. Mitchell, Maturitas, 115, 64 (2018); https://doi.org/10.1016/j.maturitas.2018.06.010
J. Yuan, J. Ma, Y. Sun, T. Zhou, Y. Zhao and F. Yu, Sci. Total Environ., 715, 136968 (2020); https://doi.org/10.1016/j.scitotenv.2020.136968
L. Hou, D. Kumar, C.G. Yoo, I. Gitsov and E.L.-W. Majumder, Chem. Eng. J., 406, 126715 (2021); https://doi.org/10.1016/j.cej.2020.126715
A. Lusher, P. Hollman and J. Mendoza-Hill, Microplastics in Fisheries and Aquaculture: Status of Knowledge pn Their Occurrence and Implications for Aquatic Organisms and Food Safety, Fisheries and Aquaculture Technical Paper No., 615 FAO, Rome (2017).
Y. Zhang, H. Jiang, K. Bian, H. Wang and C. Wang, J. Environ. Chem. Eng., 9, 105463 (2021); https://doi.org/10.1016/j.jece.2021.105463
S. Lechthaler, K. Waldschläger, G. Stauch and H. Schüttrumpf, Environments, 7, 73 (2020); https://doi.org/10.3390/environments7100073ss
W. Zhang, K. Song, R. Ding, H. Han, L. Yao, M. Ji, Z. Chen, H. Yu, C. Wu and T. Fang, J. Hazard. Mater., 419, 126429 (2021); https://doi.org/10.1016/j.jhazmat.2021.126429
C.G. Bannick, R. Szewzyk, M. Ricking, S. Schniegler, N. Obermaier, A.K. Barthel, K. Altmann, P. Eisentraut and U. Braun, Water Res., 149, 650 (2019); https://doi.org/10.1016/j.watres.2018.10.045
Q. Abbas, B. Yousaf, Amina, M.U. Ali, M.A.M. Munir, A. El-Naggar, J. Rinklebe and M. Naushad, Environ. Int., 138, 105646 (2020); https://doi.org/10.1016/j.envint.2020.105646
S. Farrokhpay, Adv. Colloid Interface Sci., 151, 24 (2009); https://doi.org/10.1016/j.cis.2009.07.004
T. Poerio, E. Piacentini and R. Mazzei, Molecules, 24, 4148 (2019); https://doi.org/10.3390/molecules24224148
L. Li, G. Xu, H. Yu and J. Xing, Sci. Total Environ., 627, 332 (2018); https://doi.org/10.1016/j.scitotenv.2018.01.239
X. Yue, Y. Yang, X. Li, J. Ren, Z. Zhou, Y. Zhang and H. Yu, J. Environ. Chem. Eng., 9, 106803 (2021); https://doi.org/10.1016/j.jece.2021.106803
B. Ma, W. Xue, Y. Ding, C. Hu, H. Liu and J. Qu, J. Environ. Sci., 78, 267 (2019); https://doi.org/10.1016/j.jes.2018.10.006
M. Asadollahi, D. Bastani and S.A. Musavi, Desalination, 420, 330 (2017); https://doi.org/10.1016/j.desal.2017.05.027
S. Ziajahromi, P.A. Neale, L. Rintoul and F.D.L. Leusch, Water Res., 112, 93 (2017); https://doi.org/10.1016/j.watres.2017.01.042
Y. Zhang, Y. Zhao, H. Chu, B. Dong and X. Zhou, Chin. Sci. Bull., 59, 247 (2014); https://doi.org/10.1007/s11434-013-0048-x
J. Bayo, J. López-Castellanos and S. Olmos, Mar. Pollut. Bull., 156, 111211 (2020); https://doi.org/10.1016/j.marpolbul.2020.111211
J. Grbic, B. Nguyen, E. Guo, J.B. You, D. Sinton and C.M. Rochman, Environ. Sci. Technol. Lett., 6, 68 (2019); https://doi.org/10.1021/acs.estlett.8b00671
X. Shi, X. Zhang, W. Gao, Y. Zhang and D. He, Sci. Total Environ., 802, 149838 (2022); https://doi.org/10.1016/j.scitotenv.2021.149838
L.M.A. Martin, J. Sheng, P.V. Zimba, L. Zhu, O.O. Fadare, C. Haley, M. Wang, T.D. Phillips, J. Conkle and W. Xu, Nanomaterials, 12, 2348 (2022); https://doi.org/10.3390/nano12142348
Y. Tang, S. Zhang, Y. Su, D. Wu, Y. Zhao and B. Xie, Chem. Eng. J., 406, 126804 (2021); https://doi.org/10.1016/j.cej.2020.126804
S. Lechthaler, L. Hildebrandt, G. Stauch, and H. Schüttrumpf, Anal. Methods, 12, 5128 (2020); https://doi.org/10.1039/D0AY01574A
B. Zhou, J. Wang, H. Zhang, H. Shi, Y. Fei, S. Huang, Y. Tong, D. Wen, Y. Luo and D. Barceló, J. Hazard. Mater., 388, 121814 (2020); https://doi.org/10.1016/j.jhazmat.2019.121814
S. Saisinchai, Eng. J., 18, 45 (2014); https://doi.org/10.4186/ej.2014.18.1.45
B. Bolto and Z. Xie, Processes, 7, 374 (2019); https://doi.org/10.3390/pr7060374
J. Talvitie, A. Mikola, A. Koistinen and O. Setälä, Water Res., 123, 401 (2017); https://doi.org/10.1016/j.watres.2017.07.005
A.M. Elgarahy, A. Akhdhar and K.Z. Elwakeel, J. Environ. Chem. Eng., 9, 106224 (2021); https://doi.org/10.1016/j.jece.2021.106224
M. Padervand, E. Lichtfouse, D. Robert and C. Wang, Environ. Chem. Lett., 18, 807 (2020); https://doi.org/10.1007/s10311-020-00983-1
T.A. Lastovina and A.P. Budnyk, J. Water Process Eng., 43, 102209 (2021); https://doi.org/10.1016/j.jwpe.2021.102209
P.L. Corcoran, Degradation of Microplastics in the Environment, In: Handbook of Microplastics in the Environment, eds.: T. Rocha-Santos, M.F. Costa and C. Mouneyrac, Springer International Publishing, Cham, pp. 531-542 (2022).
S. Klein, I.K. Dimzon, J. Eubeler and T.P. Knepper, eds.: M. Wagner and S. Lambert, Analysis, Occurrence and Degradation of Microplastics in the Aqueous Environment, In: Freshwater Microplastics, The Hand-book of Environmental Chemistry, Springer International Publishing, Cham, pp. 51-67 (2018).
K. Munno, P.A. Helm, D.A. Jackson, C. Rochman and A. Sims, Environ. Toxicol. Chem., 37, 91 (2017); https://doi.org/10.1002/etc.3935
K.W. Meereboer, M. Misra and A.K. Mohanty, Green Chem., 22, 5519 (2020); https://doi.org/10.1039/D0GC01647K
M. Cole, H. Webb, P.K. Lindeque, E.S. Fileman, C. Halsband and T.S. Galloway, Sci. Rep., 4, 4528 (2014); https://doi.org/10.1038/srep04528
K. Enders, R. Lenz, C.A. Stedmon and T.G. Nielsen, Mar. Pollut. Bull., 100, 78 (2015); https://doi.org/10.1016/j.marpolbul.2015.09.027
F. Collard, B. Gilbert, G. Eppe, E. Parmentier and K. Das, Arch. Environ. Contam. Toxicol., 69, 331 (2015); https://doi.org/10.1007/s00244-015-0221-0
I. Gdara, J. Lawler, A. Staines and S. O’Neill, The State of the Art on the Potential Human Health Impacts of Microplastics and Nanoplastics, EPA Research Document 361, Dublin: Environmental Protection Agency (2021).
O.M. Rodríguez-Narvaez, A. Goonetilleke, L. Perez and E.R. Bandala, Chem. Eng. J., 414, 128692 (2021); https://doi.org/10.1016/j.cej.2021.128692
A.R. Lado Ribeiro, N.F.F. Moreira, G. Li Puma and A.M.T. Silva, Chem. Eng. J., 363, 155 (2019); https://doi.org/10.1016/j.cej.2019.01.080
H. Luo, C. Liu, D. He, J. Xu, J. Sun, J. Li and X. Pan, J. Hazard. Mater., 423, 126915 (2022); https://doi.org/10.1016/j.jhazmat.2021.126915
K. Zhu, H. Jia, Y. Sun, Y. Dai, C. Zhang, X. Guo, T. Wang and L. Zhu, Water Res., 173, 115564 (2020); https://doi.org/10.1016/j.watres.2020.115564
A.B. Silva, A.S. Bastos, C.I.L. Justino, J.P. da Costa, A.C. Duarte and T.A.P. Rocha-Santos, Anal. Chim. Acta, 1017, 1 (2018); https://doi.org/10.1016/j.aca.2018.02.043
L.M. Matuana, S. Jin and N.M. Stark, Polym. Degrad. Stab., 96, 97 (2011); https://doi.org/10.1016/j.polymdegradstab.2010.10.003
R.A. Naik, L.S. Rowles III, A.I. Hossain, M. Yen, R.M. Aldossary, O.G. Apul, J. Conkle and N.B. Saleh, Sci. Total Environ., 736, 139690 (2020); https://doi.org/10.1016/j.scitotenv.2020.139690
W. Perren, A. Wojtasik and Q. Cai, ACS Omega, 3, 3357 (2018); https://doi.org/10.1021/acsomega.7b02037
M. Kiendrebeogo, M.R. Karimi Estahbanati, A. Khosravanipour Mostafazadeh, P. Drogui and R.D. Tyagi, Environ. Pollut., 269, 116168 (2021); https://doi.org/10.1016/j.envpol.2020.116168
V.K. Gaur, S. Gupta, P. Sharma, P. Gupta, S. Varjani, J.K. Srivastava, J.-S. Chang and X.-T. Bui, Curr. Pollut. Rep., 8, 30 (2022); https://doi.org/10.1007/s40726-021-00210-7
I.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H. Gracher Riella, M.C.V.M. Starling and A.G. Trovó, Chem. Eng. J., 424, 130282 (2021); https://doi.org/10.1016/j.cej.2021.130282
A. Debroy, N. George and G. Mukherjee, J. Chem. Technol. Biotechnol., (2021); https://doi.org/10.1002/jctb.6978
H.L. Davies, H. Robb, K.D. Cox, G.A. Covernton, T.M. Eastham, H.J. Alexander and F. Juanes, J. Exp. Marine Biol. Ecol., 542, 151589 (2021); https://doi.org/10.1016/j.jembe.2021.151589
S. Elangovan, S.B.S. Pandian and S.J.G. Joshi, eds.: P.K. Arora, Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation, In: Microbial Metabolism of Xenobiotic Compounds, Singapore: Springer, pp. 165-188 (2019).
H.K. Karapanagioti and I.K. Kalavrouziotis, Microplastics in Water and Wastewater. IWA Publishing, USA (2019).
C. Tu, Y. Teng, Y. Luo, X. Li, X. Sun, Z. Li, W. Liu and P. Christie, J. Hazard. Mater., 186, 1438 (2011); https://doi.org/10.1016/j.jhazmat.2010.12.008
G.O. Adams, P.T. Fufeyin, S.E. Okoro and I. Ehinomen, Int. J. Environ. Bioremediat. Biodegrad., 3, 28 (2015); https://doi.org/10.12691/ijebb-3-1-5
M. Tyagi, M.M.R. da Fonseca and C.C.C.R. de Carvalho, Biodegradation, 22, 231 (2011); https://doi.org/10.1007/s10532-010-9394-4
S. Habib, A. Iruthayam, M.Y. Abd Shukor, S.A. Alias, J. Smykla and N.A. Yasid, Polymers, 12, 2616 (2020); https://doi.org/10.3390/polym12112616
M.R. Pikoli, P. Astuti, F.A. Rahmah, A.F. Sari and N.A. Solihat, Chiang Mai Univ. J. Sci., 49, 1 (2022); https://doi.org/10.12982/CMUJNS.2022.005
K. Wojtowicz and T. Steliga, Nafta-Gaz, 76, 507 (2020); https://doi.org/10.18668/NG.2020.08.03.
T. Steliga, K. Wojtowicz, P. Kapusta and J. Brzeszcz, Molecules, 25, 709 (2020); https://doi.org/10.3390/molecules25030709
A.V.B. Reddy, M. Moniruzzaman and T.M. Aminabhavi, Chem. Eng. J., 358, 1186 (2019); https://doi.org/10.1016/j.cej.2018.09.205
S.-Y. Chung, M. Maeda, E. Song, K. Horikoshij and T. Kudo, Biosci. Biotechnol. Biochem., 58, 2111 (1994); https://doi.org/10.1271/bbb.58.2111
Y. Liang, R. Meggo, D. Hu, J.L. Schnoor and T.E. Mattes, Ecol. Eng., 71, 215 (2014); https://doi.org/10.1016/j.ecoleng.2014.07.046
I. Sierra, J.L. Valera, M.L. Marina and F. Laborda, Chemosphere, 53, 609 (2003); https://doi.org/10.1016/S0045-6535(03)00418-1
J.D. Moody, D.R. Doerge, J.P. Freeman and C.E. Cerniglia, Appl. Microbiol. Biotechnol., 58, 364 (2002); https://doi.org/10.1007/s00253-001-0878-3
S. Murínová and K. Dercová, Water Air Soil Pollut., 225, 1980 (2014); https://doi.org/10.1007/s11270-014-1980-3
S. Zorádová, H. Dudášová, L. Lukáčová, K. Dercová and M. Čertík, Int. Biodeterior. Biodegradation, 65, 1019 (2011); https://doi.org/10.1016/j.ibiod.2011.03.012
H. Wang, J. Hu, K. Xu, X. Tang, X. Xu and C. Shen, Biodegradation, 29, 1 (2018); https://doi.org/10.1007/s10532-017-9809-6
H.J. Jeon and M.N. Kim, Int. Biodeterior. Biodegradation, 115, 244 (2016); https://doi.org/10.1016/j.ibiod.2016.08.025
K. Bano, M. Kuddus, M. Rehan Zaheer and R. Rehan Zaheer, Turk Biyokim. Derg., 44, 344 (2019); https://doi.org/10.1515/tjb-2018-0207
H.S. Auta, C.U. Emenike and S.H. Fauziah, Environ. Pollut., 231, 1552 (2017); https://doi.org/10.1016/j.envpol.2017.09.043
J. Zhang, D. Gao, Q. Li, Y. Zhao, L. Li, H. Lin, Q. Bi and Y. Zhao, Sci. Total Environ., 704, 135931 (2020); https://doi.org/10.1016/j.scitotenv.2019.135931
R. Sangeetha Devi, V. Rajesh Kannan, D. Nivas, K. Kannan, S. Chandru and A. Robert Antony, Mar. Pollut. Bull., 96, 32 (2015); https://doi.org/10.1016/j.marpolbul.2015.05.050
A. Paço, K. Duarte, J.P. da Costa, P.S.M. Santos, R. Pereira, M.E. Pereira, A.C. Freitas, A.C. Duarte and T.A.P. Rocha-Santos, Sci. Total Environ., 586, 10 (2017); https://doi.org/10.1016/j.scitotenv.2017.02.017
M.C. Krueger, U. Hofmann, M. Moeder and D. Schlosser, PLoS One, 10, e0131773 (2015); https://doi.org/10.1371/journal.pone.0131773
M.T. El-Sayed, G.H. Rabie and E.A. Hamed, Environ. Dev. Sustain., 23, 14556 (2021); https://doi.org/10.1007/s10668-021-01258-7
S. Raut, S. Raut, M. Sharma, C. Srivastav, B. Adhikari and S.K. Sen, Indian J. Microbiol., 55, 258 (2015); https://doi.org/10.1007/s12088-015-0522-z
T. Volke-Sepúlveda, G. Saucedo-Castaneda, M. Gutierrez-Rojas, A. Manzur and E. Favela-Torres, J. Appl. Polym. Sci., 83, 305 (2002); https://doi.org/10.1002/app.2245
A.R. Cowan, C.M. Costanzo, R. Benham, E.J. Loveridge and S.C. Moody, J. Appl. Microbiol., 132, 78 (2022); https://doi.org/10.1111/jam.15203
N. Afianti, A. Rachman, A. Hatmanti, D. Yogaswara, M. Anggiani, N. Fitriya and Y. Darmayati, J. Ecol. Eng., 23, 261 (2022); https://doi.org/10.12911/22998993/145463
J.Y. Cho, S. Lee Park, H.-J. Lee, S.H. Kim, M.J. Suh, S. Ham, S.K. Bhatia, R. Gurav, S.-H. Park, K. Park, D. Yoo and Y.-H. Yang, Chemosphere, 283, 131172 (2021); https://doi.org/10.1016/j.chemosphere.2021.131172
L. Ren, G. Wang, Y. Huang, J. Guo, C. Li, Y. Jia, S. Chen, J.L. Zhou and H. Hu, Sci. Total Environ., 791, 148303 (2021); https://doi.org/10.1016/j.scitotenv.2021.148303
A. Delacuvellerie, V. Cyriaque, S. Gobert, S. Benali and R. Wattiez, J. Hazard. Mater., 380, 120899 (2019); https://doi.org/10.1016/j.jhazmat.2019.120899
D. Hadad, S. Geresh and A. Sivan, J. Appl. Microbiol., 98, 1093 (2005); https://doi.org/10.1111/j.1365-2672.2005.02553.x
A.O. Azghani, E.J. Miller and B.T. Peterson, Lung, 178, 261 (2000); https://doi.org/10.1007/s004080000031
M.I. Ali, S. Ahmed, I. Javed, N. Ali, N. Atiq, A. Hameed and G. Robson, Int. J. Environ. Sci. Technol., 11, 339 (2014); https://doi.org/10.1007/s13762-013-0220-5
S.H. Joo, Y. Liang, M. Kim, J. Byun and H. Choi, Environ. Challenges, 3, 100042 (2021); https://doi.org/10.1016/j.envc.2021.100042
K.B. Sundbæk, I.D.W. Koch, C.G. Villaro, N.S. Rasmussen, S.L. Holdt and N.B. Hartmann, J. Appl. Phycol., 30, 2923 (2018); https://doi.org/10.1007/s10811-018-1472-8
T. Atugoda, H. Piyumali, S. Liyanage, K. Mahatantila and M. Vithanage, eds.: T. Rocha‑Santos, M.F. Costa and C. Mouneyrac, Fate and Behavior of Microplastics in Freshwater Systems, In: Handbook of Microplastics in the Environment, Springer Nature, pp. 1–31 (2020).
A. Bellingeri, E. Bergami, G. Grassi, C. Faleri, P. Redondo-Hasselerharm, A.A. Koelmans and I. Corsi, Aquat. Toxicol., 210, 179 (2019); https://doi.org/10.1016/j.aquatox.2019.02.022
A. Halder and Y. Sun, Biosens. Bioelectron., 139, 111334 (2019); https://doi.org/10.1016/j.bios.2019.111334
W. Liu, X. Chen, X. Lu, J. Wang, Y. Zhang and Z. Gu, Adv. Funct. Mater., 30, 2003195 (2020); https://doi.org/10.1002/adfm.202003195
Z. Wang, M. Sedighi and A. Lea-Langton, Water Res., 184, 116165 (2020); https://doi.org/10.1016/j.watres.2020.116165
Z.U. Zango, N.S. Sambudi, K. Jumbri, A. Ramli, N.H.H. Abu Bakar, B. Saad, M.N.H. Rozaini, H.A. Isiyaka, A.M. Osman and A. Sulieman, Water, 12, 2921 (2020); https://doi.org/10.3390/w12102921
S. Joseph, C.I. Kammann, J.G. Shepherd, P. Conte, H.-P. Schmidt, N. Hagemann, A.M. Rich, C.E. Marjo, J. Allen, P. Munroe, D.R.G. Mitchell, S. Donne, K. Spokas and E.R. Graber, Sci. Total Environ., 618, 1210 (2018); https://doi.org/10.1016/j.scitotenv.2017.09.200
V. Siipola, S. Pflugmacher, H. Romar, L. Wendling and P. Koukkari, Appl. Sci., 10, 788 (2020); https://doi.org/10.3390/app10030788
J. Wang, C. Sun, Q.-X. Huang, Y. Chi and J.-H. Yan, J. Hazard. Mater., 419, 126486 (2021); https://doi.org/10.1016/j.jhazmat.2021.126486
S. Ye, M. Cheng, G. Zeng, X. Tan, H. Wu, J. Liang, M. Shen, B. Song, J. Liu, H. Yang and Y. Zhang, Water Res., 179, 115876 (2020); https://doi.org/10.1016/j.watres.2020.115876