Copyright (c) 2025 Johanan christian prasana, B Aysha Rifana, A Anuradha

This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Spectroscopic, Electronic, Topological and Biological Analysis of Two Phytochemical Compounds as Anti-inflammatory Agents
Corresponding Author(s) : Johanan Christian Prasana
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
4-Hydroxy-3,5-dimethoxybenzoic acid (4HDA) and zingerone are the two phytochemical compounds with significant therapeutic potential. In this work, the structural, electronic and pharmaceutical properties of both compounds were investigated using computational methods. Density Functional Theory (DFT) was employed to investigate the atomic configurations and electronic properties of the target compounds. Spectroscopic analyses, including FT-IR, FT-Raman, and UV-Visible spectroscopy, were conducted to validate the structural characteristics. Frontier Molecular Orbital (FMO) analysis provided global reactivity descriptors to evaluate molecular stability and reactivity. Transition density matrix (TDM) heat maps were used to examine electronic excitation pathways, while molecular electrostatic potential (MEP) mapping identified electrophilic and nucleophilic regions. Topological analysis further elucidated surface characteristics, and drug-likeness assessments confirmed that both compounds fall within the optimal range for pharmaceutical applicability. Blood-brain barrier, gastrointestinal absorption and metabolic stability were also studied. Half-maximal inhibitory concentration of 4HDA and zingerone on the L929 cell line was obtained through MTT assay. Molecular docking studies revealed strong binding affinities of 4HDA and zingerone with protein 2az5 (TNF alpha protein) and 2bxk (macrophage inflammatory protein 2), showing better interactions compared to the commercially available drug (mesalamine). These findings suggest that 4HDA and zingerone can be potential candidates for inflammatory bowel disease.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Pezzuto, J. Agric. Food Chem., 56, 6777 (2008); https://doi.org/10.1021/jf800898p
- L.A. Pacheco-Palencia, S. Mertens-Talcott and S.T. Talcott, J. Agric. Food Chem., 56, 4631 (2008); https://doi.org/10.1021/jf800161u
- K. Kim, R. Tsao, R. Yang and S. Cui, Food Chem., 95, 466 (2006); https://doi.org/10.1016/j.foodchem.2005.01.032
- J. Ji, X. Yang, M. Flavel, Z.P.-I. Shields and B. Kitchen, J. Am. Coll. Nutr., 38, 670 (2019); https://doi.org/10.1080/07315724.2019.1587323
- C.M. Guimarães, M.S. Gião, S.S. Martinez, A.I. Pintado, M.E. Pintado, L.S. Bento and F.X. Malcata, J. Food Sci., 72, 1 (2007); https://doi.org/10.1111/j.1750-3841.2006.00231.x
- M.A. Deseo, A. Elkins, S. Rochfort and B. Kitchen, Food Chem., 314, 126180 (2020); https://doi.org/10.1016/j.foodchem.2020.126180
- W.R. Jaffé, Sugar Tech, 14, 87 (2012); https://doi.org/10.1007/s12355-012-0145-1
- C. Srinivasulu, M. Ramgopal, G. Ramanjaneyulu, C.M. Anuradha and C. Suresh Kumar, Biomed. Pharmacother., 108, 547 (2018); https://doi.org/10.1016/j.biopha.2018.09.069
- B.C. Sahoo, S. Sahoo, S. Nayak and B. Kar, Plant Sci. Today, 9, 81 (2021); https://doi.org/10.14719/pst.1102
- F. Ayustaningwarno, G. Anjani, A.M. Ayu and V. Fogliano, Front. Nutr., 11, 1364836 (2024); https://doi.org/10.3389/fnut.2024.1364836
- B. Ahmad, M. U. Rehman, I. Amin, A. Arif, S. Rasool, S. A. Bhat, I. Afzal, I. Hussain, S. Bilal and M.R. Mir, Scientific World J., 2015, 816364 (2015); https://doi.org/10.1155/2015/816364
- S. Shashikala B.V, S. Ampeti, M. Srivastava, S.R. Sali and RB. Sheikh, medtigo J. Pharmacol., 1, e3061113 (2024); https://doi.org/10.63096/medtigo3061113
- R. Gupta, P.K. Singh, R. Singh and R.L. Singh, In. J. Scient. Innov. Res., 4, 1 (2016).
- M. Chieppa, S. De Santis and G. Verna, Inflamm. Bowel Dis., 31, 1158 (2025); https://doi.org/10.1093/ibd/izaf006
- R. Khanna, A.S. Wilson, J.C. Gregor, K.L. Prowse and W. Afif, Gastroenterology, 161, 2059 (2021); https://doi.org/10.1053/j.gastro.2021.09.021
- A.N. Ananthakrishnan, Nat. Rev. Gastroenterol. Hepatol., 12, 205 (2015); https://doi.org/10.1038/nrgastro.2015.34
- S.M. Wilhelm and B.L. Love, Clin. Pharm., 9, 3 (2017); https://doi.org/10. 1211/PJ.2017.20202316
- J. Jang and S. Jeong, Biochip J., 17, 403 (2023); https://doi.org/10.1007/s13206-023-00118-y
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, A.F. Izmaylov, J.L. Sonnenberg, J.V. Ortiz, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision A. 03, Gaussian Inc., Wallingford, CT (2016).
- R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5 (2009).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
- N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, (1996); https://doi.org/10.1016/0263-7855(96)00018-5
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
- R. Huey, G.M. Morris and S. Forli, Using AutoDock 4 and AutoDock vina with AutoDockTools: A Tutorial, The Scripps Research Institute, California, USA (2012).
- R.O. Jones and O. Gunnarsson, Rev. Mod. Phys., 61, 689 (1989); https://doi.org/10.1103/RevModPhys.61.689
- F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. II, 2, S1 (1987); https://doi.org/10.1039/p298700000s1
- J. Laane, J. Phys. Chem. A, 104, 7715 (2000); https://doi.org/10.1021/jp0009002
- G. Fogarasi, J.E. Boggs and P. Pulay, Mol. Phys., 50, 139 (1983); https://doi.org/10.1080/00268978300102231
- M.P. Andersson and P. Uvdal, J. Phys. Chem. A, 109, 2937 (2005); https://doi.org/10.1021/jp045733a
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coord-ination Compounds, Part B: Applications in Coordination, Organo-metallic and Bioinorganic Chemistry, John Wiley & Sons, (2009).
- R.M. Silverstein and G.C. Bassler, J. Chem. Educ., 39, 546 (1962); https://doi.org/10.1021/ed039p546
- K. Garima, A. Fatima, K. Pooja, S. Savita, M. Sharma, M. Kumar, S. Muthu, N. Siddiqui, and S. Javed, Polycycl. Arom. Compds., 43, 7828 (2022); https://doi.org/10.1080/10406638.2022.2140681
- B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, CRC Press (1996).
- P. Ramesh, M. Lydia Caroline, S. Muthu, B. Narayana, M. Raja and S. Aayisha, J. Mol. Struct., 1200, 127123 (2020); https://doi.org/10.1016/j.molstruc.2019.127123
- K. Hemachandran, P. Anbusrinivasan, S. Ramalingam, R. Aarthi and C.K. Nithya, Heliyon, 5, e02788 (2019); https://doi.org/10.1016/j.heliyon.2019.e02788
- B.F. Rizwana, J.C. Prasana and S. Muthu, Int. J. Mater. Sci., 12, 196 (2017).
- V.A. Pathade, R.H. Waghchaure, B.S. Jagdale, T.B. Pawar and S.S. Pathade, Int. J. Adv. Sci. Res., 11 (Suppl 2), 64 (2020); 42. M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey and F. Hatamjafari, J. Chem. Res., 45, 147 (2021);
- https://doi.org/10.1177/1747519820932091
- J.D. Magdaline and T. Chithambarathanu, IOSR J. Appl. Chem., 8, (2015); https://doi.org/10.9790/5736-08510614
- A. Dreuw and M. Head-Gordon, Chem. Rev., 105, 4009 (2005); https://doi.org/10.1021/cr0505627
- B. Silvi and A. Savin, Nature, 371, 683 (1994); https://doi.org/10.1038/371683a0
- J.N. Israelachvili, Contemp. Phys., 15, 159 (1974); https://doi.org/10.1080/00107517408210785
- B. Bakchi, A.D. Krishna, E. Sreecharan, V.B.J. Ganesh, M. Niharika, S. Maharshi, S.B. Puttagunta, D.K. Sigalapalli, R.R. Bhandare and A.B. Shaik, J. Mol. Struct., 1259, 132712 (2022); https://doi.org/10.1016/j.molstruc.2022.132712
- A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
- R. Shimazu, M. Anada, A. Miyaguchi, Y. Nomi and H. Matsumoto, J. Agric. Food Chem., 69, 11676 (2021); https://doi.org/10.1021/acs.jafc.1c02898
References
J.M. Pezzuto, J. Agric. Food Chem., 56, 6777 (2008); https://doi.org/10.1021/jf800898p
L.A. Pacheco-Palencia, S. Mertens-Talcott and S.T. Talcott, J. Agric. Food Chem., 56, 4631 (2008); https://doi.org/10.1021/jf800161u
K. Kim, R. Tsao, R. Yang and S. Cui, Food Chem., 95, 466 (2006); https://doi.org/10.1016/j.foodchem.2005.01.032
J. Ji, X. Yang, M. Flavel, Z.P.-I. Shields and B. Kitchen, J. Am. Coll. Nutr., 38, 670 (2019); https://doi.org/10.1080/07315724.2019.1587323
C.M. Guimarães, M.S. Gião, S.S. Martinez, A.I. Pintado, M.E. Pintado, L.S. Bento and F.X. Malcata, J. Food Sci., 72, 1 (2007); https://doi.org/10.1111/j.1750-3841.2006.00231.x
M.A. Deseo, A. Elkins, S. Rochfort and B. Kitchen, Food Chem., 314, 126180 (2020); https://doi.org/10.1016/j.foodchem.2020.126180
W.R. Jaffé, Sugar Tech, 14, 87 (2012); https://doi.org/10.1007/s12355-012-0145-1
C. Srinivasulu, M. Ramgopal, G. Ramanjaneyulu, C.M. Anuradha and C. Suresh Kumar, Biomed. Pharmacother., 108, 547 (2018); https://doi.org/10.1016/j.biopha.2018.09.069
B.C. Sahoo, S. Sahoo, S. Nayak and B. Kar, Plant Sci. Today, 9, 81 (2021); https://doi.org/10.14719/pst.1102
F. Ayustaningwarno, G. Anjani, A.M. Ayu and V. Fogliano, Front. Nutr., 11, 1364836 (2024); https://doi.org/10.3389/fnut.2024.1364836
B. Ahmad, M. U. Rehman, I. Amin, A. Arif, S. Rasool, S. A. Bhat, I. Afzal, I. Hussain, S. Bilal and M.R. Mir, Scientific World J., 2015, 816364 (2015); https://doi.org/10.1155/2015/816364
S. Shashikala B.V, S. Ampeti, M. Srivastava, S.R. Sali and RB. Sheikh, medtigo J. Pharmacol., 1, e3061113 (2024); https://doi.org/10.63096/medtigo3061113
R. Gupta, P.K. Singh, R. Singh and R.L. Singh, In. J. Scient. Innov. Res., 4, 1 (2016).
M. Chieppa, S. De Santis and G. Verna, Inflamm. Bowel Dis., 31, 1158 (2025); https://doi.org/10.1093/ibd/izaf006
R. Khanna, A.S. Wilson, J.C. Gregor, K.L. Prowse and W. Afif, Gastroenterology, 161, 2059 (2021); https://doi.org/10.1053/j.gastro.2021.09.021
A.N. Ananthakrishnan, Nat. Rev. Gastroenterol. Hepatol., 12, 205 (2015); https://doi.org/10.1038/nrgastro.2015.34
S.M. Wilhelm and B.L. Love, Clin. Pharm., 9, 3 (2017); https://doi.org/10. 1211/PJ.2017.20202316
J. Jang and S. Jeong, Biochip J., 17, 403 (2023); https://doi.org/10.1007/s13206-023-00118-y
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, A.F. Izmaylov, J.L. Sonnenberg, J.V. Ortiz, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision A. 03, Gaussian Inc., Wallingford, CT (2016).
R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5 (2009).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, (1996); https://doi.org/10.1016/0263-7855(96)00018-5
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
R. Huey, G.M. Morris and S. Forli, Using AutoDock 4 and AutoDock vina with AutoDockTools: A Tutorial, The Scripps Research Institute, California, USA (2012).
R.O. Jones and O. Gunnarsson, Rev. Mod. Phys., 61, 689 (1989); https://doi.org/10.1103/RevModPhys.61.689
F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. II, 2, S1 (1987); https://doi.org/10.1039/p298700000s1
J. Laane, J. Phys. Chem. A, 104, 7715 (2000); https://doi.org/10.1021/jp0009002
G. Fogarasi, J.E. Boggs and P. Pulay, Mol. Phys., 50, 139 (1983); https://doi.org/10.1080/00268978300102231
M.P. Andersson and P. Uvdal, J. Phys. Chem. A, 109, 2937 (2005); https://doi.org/10.1021/jp045733a
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coord-ination Compounds, Part B: Applications in Coordination, Organo-metallic and Bioinorganic Chemistry, John Wiley & Sons, (2009).
R.M. Silverstein and G.C. Bassler, J. Chem. Educ., 39, 546 (1962); https://doi.org/10.1021/ed039p546
K. Garima, A. Fatima, K. Pooja, S. Savita, M. Sharma, M. Kumar, S. Muthu, N. Siddiqui, and S. Javed, Polycycl. Arom. Compds., 43, 7828 (2022); https://doi.org/10.1080/10406638.2022.2140681
B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, CRC Press (1996).
P. Ramesh, M. Lydia Caroline, S. Muthu, B. Narayana, M. Raja and S. Aayisha, J. Mol. Struct., 1200, 127123 (2020); https://doi.org/10.1016/j.molstruc.2019.127123
K. Hemachandran, P. Anbusrinivasan, S. Ramalingam, R. Aarthi and C.K. Nithya, Heliyon, 5, e02788 (2019); https://doi.org/10.1016/j.heliyon.2019.e02788
B.F. Rizwana, J.C. Prasana and S. Muthu, Int. J. Mater. Sci., 12, 196 (2017).
V.A. Pathade, R.H. Waghchaure, B.S. Jagdale, T.B. Pawar and S.S. Pathade, Int. J. Adv. Sci. Res., 11 (Suppl 2), 64 (2020); 42. M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey and F. Hatamjafari, J. Chem. Res., 45, 147 (2021);
https://doi.org/10.1177/1747519820932091
J.D. Magdaline and T. Chithambarathanu, IOSR J. Appl. Chem., 8, (2015); https://doi.org/10.9790/5736-08510614
A. Dreuw and M. Head-Gordon, Chem. Rev., 105, 4009 (2005); https://doi.org/10.1021/cr0505627
B. Silvi and A. Savin, Nature, 371, 683 (1994); https://doi.org/10.1038/371683a0
J.N. Israelachvili, Contemp. Phys., 15, 159 (1974); https://doi.org/10.1080/00107517408210785
B. Bakchi, A.D. Krishna, E. Sreecharan, V.B.J. Ganesh, M. Niharika, S. Maharshi, S.B. Puttagunta, D.K. Sigalapalli, R.R. Bhandare and A.B. Shaik, J. Mol. Struct., 1259, 132712 (2022); https://doi.org/10.1016/j.molstruc.2022.132712
A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
R. Shimazu, M. Anada, A. Miyaguchi, Y. Nomi and H. Matsumoto, J. Agric. Food Chem., 69, 11676 (2021); https://doi.org/10.1021/acs.jafc.1c02898