Copyright (c) 2025 Thanunya Saowapark, Adisak Jaturapiree, Kanjarat Sukrat, Witoon Wattananit, Ekrachan Chaichana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation on Properties and Pyrolysis Performance of Natural Rubber/Sugarcane Bagasse Biocomposites
Corresponding Author(s) : Ekrachan Chaichana
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
Sugarcane bagasse has been frequently used as a filler in natural rubber biocomposites to enhance mechanical properties. In addition, the presence of bagasse filler also enhances other properties of natural rubber biocomposites including thermal properties and chemical properties, which could influence the pyrolysis recycling process when recycled. Therefore, the effect of bagasse filler on the pyrolysis recycling process was investigated along with the mechanical and thermal properties. A pristine natural rubber (NR) and bagasse-natural rubber biocomposites (NR/BG) with various amounts of bagasse (5, 10 and 15 phr) were prepared. The pyrolysis processes were conducted at 400 ºC for all samples, and the obtained products were analyzed. It was found that most of the mechanical properties of the rubber samples including tensile strength, modulus and tear strength increased with increasing the amount of bagasse. In addition, thermal stability of NR/BG were better than that of NR. When pyrolyzing the rubber samples, it was observed that all the pyrolyzed liquids have the nearly heating values, between 43.1-44.2 MJ/kg suggesting no significant change in fuel property. However, the chemical composition of the obtained liquids considerably varied, especially limonene which was found higher in the liquids from NR/BG (61.9-73.4 wt.%) than that from NR (31.65 wt.%). The presence of BG inside NR/BG biocomposites changes chemical compositions of the biocomposites, especially Zn which possess the catalytic ability to convert the primarily-generated limonene into other products, and also provided low hydrogen-to-carbon source which reduced the conversion of limonene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Athijayamani, B. Stalin, S. Sidhardhan and A.B. Alavudeen, J. Polym. Eng., 36, 157 (2016); https://doi.org/10.1515/polyeng-2014-0325
- A. Akinlabi, R.N. Laleye, S. Akinfenwa, A. Mosaku, A. Falomo, G. Oladipo, S. Oni, F. Falope and N. Ilesanmi, J. Chem. Soc. Nigeria, 45, 1092 (2020); https://doi.org/10.46602/jcsn.v45i6.553
- Z.M. Bekele, E. Woldesenbet and E.G. Koricho, J. Compos. Mater., 56, 4501 (2022); https://doi.org/10.1177/00219983221134152
- N.N. Sibiya, M.J. Mochane, T.E. Motaung, L.Z. Linganiso and S.P. Hlangothi, Wood Res., 63, 821 (2018).
- W. Han, D. Han and H. Chen, Polymers, 15, 1604 (2023); https://doi.org/10.3390/polym15071604
- W.M. Lewandowski, K. Januszewicz and W. Kosakowski, J. Anal. Appl. Pyrolysis, 140, 25 (2019); https://doi.org/10.1016/j.jaap.2019.03.018
- I. Hita, M. Arabiourrutia, M. Olazar, J. Bilbao, J.M. Arandes and P. Castaño, Renew. Sustain. Energy Rev., 56, 745 (2016); https://doi.org/10.1016/j.rser.2015.11.081
- Z. Shen, W. Song, X. Li, L. Yang, C. Wang, Z. Hao and Z. Luo, J. Polym. Eng., 41, 404 (2021); https://doi.org/10.1515/polyeng-2020-0331
- N. Lopattananon, K. Panawarangkul, K. Sahakaro and B. Ellis, J. Appl. Polym. Sci., 102, 1974 (2006); https://doi.org/10.1002/app.24584
- K. Januszewicz, P. Kazimierski, T. Suchocki, D. Kardaś, W. Lewandowski, E. Klugmann-Radziemska and J. Łuczak, Materials, 13, 4435 (2020); https://doi.org/10.3390/ma13194435
- S. Chemat, V. Tomao and F. Chemat, eds.: A. Mohammad, Limonene as Green Solvent for Extraction of Natural Products, In: Green Solvents I: Properties and Applications in Chemistry, Springer Netherlands, Dordrecht, p. 175 (2012).
- M.W. Malko and A. Wróblewska, Chemik, 70, 193 (2016).
- N. Ahmad, N. Ahmad, I.M. Maafa, U. Ahmed, P. Akhter, N. Shehzad, U. Amjad, M. Hussain and M. Javaid, Energy, 191, 116543 (2020); https://doi.org/10.1016/j.energy.2019.116543
- S. Yan, D. Xia and W. Xuan, Fuel Process. Technol., 200, 106309 (2020); https://doi.org/10.1016/j.fuproc.2019.106309
- J. Wang, J. Jiang, Z. Zhang, X. Meng, Y. Sun, A.J. Ragauskas, Q. Zhang and D.C.W. Tsang, Energy Convers. Manage., 270, 116250 (2022); https://doi.org/10.1016/j.enconman.2022.116250
- A.J. Bowles, Á. Nievas and G.D. Fowler, Sustain. Chem. Pharm., 32, 100972 (2023); https://doi.org/10.1016/j.scp.2023.100972
- Y. Zhang, G. Ji and A. Li, Process Saf. Environ. Prot., 178, 287 (2023); https://doi.org/10.1016/j.psep.2023.08.018
- C.M. Hartquist, S. Lin, J.H. Zhang, S. Wang, M. Rubinstein and X. Zhao, Sci. Adv., 9, eadj0411 (2023); https://doi.org/10.1126/sciadv.adj0411
- Y. Nie, Z. Gu, Y. Wei, T. Hao and Z. Zhou, Polym. J., 49, 309 (2017); https://doi.org/10.1038/pj.2016.114
- E.A. Dzyura, Int. J. Polym. Mater., 8, 165 (1980); https://doi.org/10.1080/00914038008077943
- N.I. Ismail and Z.A.M. Ishak, IOP Conf. Ser.: Mater. Sci. Eng., 368, 012014 (2018); https://doi.org/10.1088/1757-899X/368/1/012014
- A.P. Mathew, K. Oksman and M. Sain, J. Appl. Polym. Sci., 97, 2014 (2005); https://doi.org/10.1002/app.21779
- H.D. Rozman, K.W. Tan, R.N. Kumar, A. Abubakar, Z.A. Mohd. Ishak and H. Ismail, Eur. Polym. J., 36, 1483 (2000); https://doi.org/10.1016/S0014-3057(99)00200-1
- E. Yao, Y. Wang, Q. Yang, H. Zhong, T. Liu, H. Zou and Y. Zhang, Energy Fuels, 33, 12450 (2019); https://doi.org/10.1021/acs.energyfuels.9b02918
- Y. Zhou, M. Fan, L. Chen and J. Zhuang, Composites B Eng., 76, 180 (2015); https://doi.org/10.1016/j.compositesb.2015.02.028
- O.M. Perrone, F.M. Colombari, J.S. Rossi, M.M.S. Moretti, S.E. Bordignon, C.C.C. Nunes, E. Gomes, M. Boscolo and R. Da-Silva, Bioresour. Technol., 218, 69 (2016); https://doi.org/10.1016/j.biortech.2016.06.072
- P.K. Gallagher, eds.: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan and P. Veyssière, Thermal Analysis: Further Developments, In: Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, pp. 9141-9150 (2001).
- K. Lamnawar, A. Baudouin and A. Maazouz, Eur. Polym. J., 46, 1604 (2010); https://doi.org/10.1016/j.eurpolymj.2010.03.019
- B. Duan, H. Mo, B. Tan, X. Lu, B. Wang and N. Liu, Def. Technol., 31, 387 (2024); https://doi.org/10.1016/j.dt.2023.02.001
- Y. Wang and T.H. Hahn, Compos. Sci. Technol., 67, 92 (2007); https://doi.org/10.1016/j.compscitech.2006.03.030
- T.A. Singh, J. Das and P.C. Sil, Adv. Colloid Interface Sci., 286, 102317 (2020); https://doi.org/10.1016/j.cis.2020.102317
- M.J.W. Povey, Introduction to Materials Science, Oxford, UK: Oxford University Press (2013).
- Y. Han, J. Yu, T. Chen, X. Liu and L. Sun, J. Energy Inst., 94, 210 (2021); https://doi.org/10.1016/j.joei.2020.09.005
- R. Khan, B.A. Perez and H.E. Toraman, J. Chromatogr. A, 1732, 465244 (2024); https://doi.org/10.1016/j.chroma.2024.465244
- F. Wanignon Ferdinand, L. Van de Steene, K. Kamenan Blaise and T. Siaka, Fuel, 96, 141 (2012); https://doi.org/10.1016/j.fuel.2012.01.007
- T. Kan, V. Strezov and T. Evans, Fuel, 191, 403 (2017); https://doi.org/10.1016/j.fuel.2016.11.100
- B. Danon, P. van der Gryp, C.E. Schwarz and J.F. Görgens, J. Anal. Appl. Pyrolysis, 112, 1 (2015); https://doi.org/10.1016/j.jaap.2014.12.025
- X. Zhang, T. Wang, L. Ma and J. Chang, Waste Manag., 28, 2301 (2008); https://doi.org/10.1016/j.wasman.2007.10.009
- I.M. Rofiqul, H. Haniu and A.B.M. Rafiqul, J. Environ. Eng., 2, 681 (2007); https://doi.org/10.1299/jee.2.681
- M. Arabiourrutia, M. Olazar, R. Aguado, G. López, A. Barona and J. Bilbao, Ind. Eng. Chem. Res., 47, 7600 (2008); https://doi.org/10.1021/ie800376d
- F. Chen and J. Qian, Fuel, 81, 2071 (2002); https://doi.org/10.1016/S0016-2361(02)00147-3
- H. Zhang, Y.-T. Cheng, T.P. Vispute, R. Xiao and G.W. Huber, Energy Environ. Sci., 4, 2297 (2011); https://doi.org/10.1039/c1ee01230d
- P.S. Rezaei, H. Shafaghat and W.M.A.W. Daud, Appl. Catal. A Gen., 469, 490 (2014); https://doi.org/10.1016/j.apcata.2013.09.036
- N. Ahmad, F. Abnisa and W.M.A. Wan Daud, Fuel, 218, 227 (2018); https://doi.org/10.1016/j.fuel.2017.12.117
References
A. Athijayamani, B. Stalin, S. Sidhardhan and A.B. Alavudeen, J. Polym. Eng., 36, 157 (2016); https://doi.org/10.1515/polyeng-2014-0325
A. Akinlabi, R.N. Laleye, S. Akinfenwa, A. Mosaku, A. Falomo, G. Oladipo, S. Oni, F. Falope and N. Ilesanmi, J. Chem. Soc. Nigeria, 45, 1092 (2020); https://doi.org/10.46602/jcsn.v45i6.553
Z.M. Bekele, E. Woldesenbet and E.G. Koricho, J. Compos. Mater., 56, 4501 (2022); https://doi.org/10.1177/00219983221134152
N.N. Sibiya, M.J. Mochane, T.E. Motaung, L.Z. Linganiso and S.P. Hlangothi, Wood Res., 63, 821 (2018).
W. Han, D. Han and H. Chen, Polymers, 15, 1604 (2023); https://doi.org/10.3390/polym15071604
W.M. Lewandowski, K. Januszewicz and W. Kosakowski, J. Anal. Appl. Pyrolysis, 140, 25 (2019); https://doi.org/10.1016/j.jaap.2019.03.018
I. Hita, M. Arabiourrutia, M. Olazar, J. Bilbao, J.M. Arandes and P. Castaño, Renew. Sustain. Energy Rev., 56, 745 (2016); https://doi.org/10.1016/j.rser.2015.11.081
Z. Shen, W. Song, X. Li, L. Yang, C. Wang, Z. Hao and Z. Luo, J. Polym. Eng., 41, 404 (2021); https://doi.org/10.1515/polyeng-2020-0331
N. Lopattananon, K. Panawarangkul, K. Sahakaro and B. Ellis, J. Appl. Polym. Sci., 102, 1974 (2006); https://doi.org/10.1002/app.24584
K. Januszewicz, P. Kazimierski, T. Suchocki, D. Kardaś, W. Lewandowski, E. Klugmann-Radziemska and J. Łuczak, Materials, 13, 4435 (2020); https://doi.org/10.3390/ma13194435
S. Chemat, V. Tomao and F. Chemat, eds.: A. Mohammad, Limonene as Green Solvent for Extraction of Natural Products, In: Green Solvents I: Properties and Applications in Chemistry, Springer Netherlands, Dordrecht, p. 175 (2012).
M.W. Malko and A. Wróblewska, Chemik, 70, 193 (2016).
N. Ahmad, N. Ahmad, I.M. Maafa, U. Ahmed, P. Akhter, N. Shehzad, U. Amjad, M. Hussain and M. Javaid, Energy, 191, 116543 (2020); https://doi.org/10.1016/j.energy.2019.116543
S. Yan, D. Xia and W. Xuan, Fuel Process. Technol., 200, 106309 (2020); https://doi.org/10.1016/j.fuproc.2019.106309
J. Wang, J. Jiang, Z. Zhang, X. Meng, Y. Sun, A.J. Ragauskas, Q. Zhang and D.C.W. Tsang, Energy Convers. Manage., 270, 116250 (2022); https://doi.org/10.1016/j.enconman.2022.116250
A.J. Bowles, Á. Nievas and G.D. Fowler, Sustain. Chem. Pharm., 32, 100972 (2023); https://doi.org/10.1016/j.scp.2023.100972
Y. Zhang, G. Ji and A. Li, Process Saf. Environ. Prot., 178, 287 (2023); https://doi.org/10.1016/j.psep.2023.08.018
C.M. Hartquist, S. Lin, J.H. Zhang, S. Wang, M. Rubinstein and X. Zhao, Sci. Adv., 9, eadj0411 (2023); https://doi.org/10.1126/sciadv.adj0411
Y. Nie, Z. Gu, Y. Wei, T. Hao and Z. Zhou, Polym. J., 49, 309 (2017); https://doi.org/10.1038/pj.2016.114
E.A. Dzyura, Int. J. Polym. Mater., 8, 165 (1980); https://doi.org/10.1080/00914038008077943
N.I. Ismail and Z.A.M. Ishak, IOP Conf. Ser.: Mater. Sci. Eng., 368, 012014 (2018); https://doi.org/10.1088/1757-899X/368/1/012014
A.P. Mathew, K. Oksman and M. Sain, J. Appl. Polym. Sci., 97, 2014 (2005); https://doi.org/10.1002/app.21779
H.D. Rozman, K.W. Tan, R.N. Kumar, A. Abubakar, Z.A. Mohd. Ishak and H. Ismail, Eur. Polym. J., 36, 1483 (2000); https://doi.org/10.1016/S0014-3057(99)00200-1
E. Yao, Y. Wang, Q. Yang, H. Zhong, T. Liu, H. Zou and Y. Zhang, Energy Fuels, 33, 12450 (2019); https://doi.org/10.1021/acs.energyfuels.9b02918
Y. Zhou, M. Fan, L. Chen and J. Zhuang, Composites B Eng., 76, 180 (2015); https://doi.org/10.1016/j.compositesb.2015.02.028
O.M. Perrone, F.M. Colombari, J.S. Rossi, M.M.S. Moretti, S.E. Bordignon, C.C.C. Nunes, E. Gomes, M. Boscolo and R. Da-Silva, Bioresour. Technol., 218, 69 (2016); https://doi.org/10.1016/j.biortech.2016.06.072
P.K. Gallagher, eds.: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan and P. Veyssière, Thermal Analysis: Further Developments, In: Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, pp. 9141-9150 (2001).
K. Lamnawar, A. Baudouin and A. Maazouz, Eur. Polym. J., 46, 1604 (2010); https://doi.org/10.1016/j.eurpolymj.2010.03.019
B. Duan, H. Mo, B. Tan, X. Lu, B. Wang and N. Liu, Def. Technol., 31, 387 (2024); https://doi.org/10.1016/j.dt.2023.02.001
Y. Wang and T.H. Hahn, Compos. Sci. Technol., 67, 92 (2007); https://doi.org/10.1016/j.compscitech.2006.03.030
T.A. Singh, J. Das and P.C. Sil, Adv. Colloid Interface Sci., 286, 102317 (2020); https://doi.org/10.1016/j.cis.2020.102317
M.J.W. Povey, Introduction to Materials Science, Oxford, UK: Oxford University Press (2013).
Y. Han, J. Yu, T. Chen, X. Liu and L. Sun, J. Energy Inst., 94, 210 (2021); https://doi.org/10.1016/j.joei.2020.09.005
R. Khan, B.A. Perez and H.E. Toraman, J. Chromatogr. A, 1732, 465244 (2024); https://doi.org/10.1016/j.chroma.2024.465244
F. Wanignon Ferdinand, L. Van de Steene, K. Kamenan Blaise and T. Siaka, Fuel, 96, 141 (2012); https://doi.org/10.1016/j.fuel.2012.01.007
T. Kan, V. Strezov and T. Evans, Fuel, 191, 403 (2017); https://doi.org/10.1016/j.fuel.2016.11.100
B. Danon, P. van der Gryp, C.E. Schwarz and J.F. Görgens, J. Anal. Appl. Pyrolysis, 112, 1 (2015); https://doi.org/10.1016/j.jaap.2014.12.025
X. Zhang, T. Wang, L. Ma and J. Chang, Waste Manag., 28, 2301 (2008); https://doi.org/10.1016/j.wasman.2007.10.009
I.M. Rofiqul, H. Haniu and A.B.M. Rafiqul, J. Environ. Eng., 2, 681 (2007); https://doi.org/10.1299/jee.2.681
M. Arabiourrutia, M. Olazar, R. Aguado, G. López, A. Barona and J. Bilbao, Ind. Eng. Chem. Res., 47, 7600 (2008); https://doi.org/10.1021/ie800376d
F. Chen and J. Qian, Fuel, 81, 2071 (2002); https://doi.org/10.1016/S0016-2361(02)00147-3
H. Zhang, Y.-T. Cheng, T.P. Vispute, R. Xiao and G.W. Huber, Energy Environ. Sci., 4, 2297 (2011); https://doi.org/10.1039/c1ee01230d
P.S. Rezaei, H. Shafaghat and W.M.A.W. Daud, Appl. Catal. A Gen., 469, 490 (2014); https://doi.org/10.1016/j.apcata.2013.09.036
N. Ahmad, F. Abnisa and W.M.A. Wan Daud, Fuel, 218, 227 (2018); https://doi.org/10.1016/j.fuel.2017.12.117