Copyright (c) 2025 Sathish M

This work is licensed under a Creative Commons Attribution 4.0 International License.
Thioacetamide-Doped Zinc Nitrate Hexahydrate Nanostructures: Hydrothermal Synthesis and Characterization
Corresponding Author(s) : C. Palanivel
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
In this study, we successfully synthesized thioacetamide-doped zinc nitrate hexahydrate nanostructures using a hydrothermal method. Thioacetamide was used as a dopant in order to improve the desirable structural, optical, morphological and electrochemical properties. The synthesized materials were characterized various analytical techniques. In particular, UV–visible spectroscopy was employed to investigate the optical absorption properties and the effects of thioacetamide doping, which revealed corresponding changes in the band gap. FTIR analysis confirmed the functional groups and chemical bonding within the material. X-ray diffraction (XRD) verified its crystalline structure and phase purity, while scanning electron microscopy (SEM) revealed surface morphology. X-ray photoelectron spectroscopy (XPS) provided insights into elemental composition and oxidation states, confirming the successful incorporation of thioacetamide as a dopant. Electrochemical characterization via cyclic voltammetry (CV) demonstrated enhanced redox activity resulting from thioacetamide doping. And its electrochemical performance is evaluated using galvanostatic charge-discharge (GCD) analysis. The results demonstrate that hydrothermal synthesis is an effective method for producing doped zinc-based nanostructures with enhanced or tunable properties. Importantly, understanding and predicting the tunable properties of the material can facilitate its use in a wide range of future optoelectronic and electrochemical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.D. Weldekirstos, P. Girma, A. Tedla, N. Aberra and A. Negash, Water Air Soil Pollut., 236, 580 (2025); https://doi.org/10.1007/s11270-025-08217-2
- S. Goel, N. Sinha, H. Yadav, A.J. Joseph, and B. Kumar, Physica E, 91, 72 (2017); https://doi.org/10.1016/j.physe.2017.04.010
- P.M. Patil, B. Sannakki, S.N. Mathad, E. Veena and S. Gandad, Acta Period. Technol., 54, 277 (2023); https://doi.org/10.2298/APT2354277
- P.S. Krithika and J. Balavijayalakshmi, Mater. Res. Express, 6, 105023 (2019); https://doi.org/10.1088/2053-1591/ab3828
- H. Hajovsky, G. Hu, Y. Koen, D. Sarma, W. Cui, D.S. Moore, J.L. Staudinger and R.P. Hanzlik, Chem. Res. Toxicol., 25, 1955 (2012); https://doi.org/10.1021/tx3002719
- M.C. Wallace, K. Hamesch, M. Lunova, Y. Kim, R. Weiskirchen, P. Strnad and S.L. Friedman, Lab. Anim., 49(suppl), 21 (2015); https://doi.org/10.1177/0023677215573040
- N.J. Waters, C.J. Waterfield, R.D. Farrant, E. Holmes and J.K. Nicholson, Chem. Res. Toxicol., 18, 639 (2005); https://doi.org/10.1021/tx049869b
- J. Chilakapati, K. Shankar, M.C. Korrapati, R.A. Hill and H.M. Mehendale, Drug Metab. Dispos., 33, 1877 (2005); https://doi.org/10.1124/dmd.105.005520
- Y.M. Koen, D. Sarma, H. Hajovsky, N.A. Galeva, T.D. Williams, J.L. Staudinger and R.P. Hanzlik, Chem. Res. Toxicol., 26, 564 (2013); https://doi.org/10.1021/tx400001x
- Y. Zhang, Y. Jia, M. Li and L.A. Hou, Sci. Rep., 8, 9597 (2018); https://doi.org/10.1038/s41598-018-28015-7
- S. Ahmed, D. Ibbotson, C. Somodi and P.J. Shamberger, ACS Appl. Energy Mater., 2, 530 (2024); https://doi.org/10.1021/acsaenm.3c00444
- P. Li, Z.P. Xu, M.A. Hampton, D.T. Vu, L. Huang, V. Rudolph and A.V. Nguyen, J. Phys. Chem. C, 116, 10325 (2012); https://doi.org/10.1021/jp300045u
- M. Kasaeian, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian and G. Bahlakeh, Appl. Surf. Sci., 462, 963 (2018); https://doi.org/10.1016/j.apsusc.2018.08.054
- L. Wan, X. Wang, S. Yan, H. Yu, Z. Li and Z. Zou, CrystEngComm, 14, 154 (2012); https://doi.org/10.1039/C1CE05805C
- K. Oravcová and V. Danielik, Acta Chim. Slov., 11, 51 (2018); https://doi.org/10.2478/acs-2018-0008
- C. Pholnak, C. Sirisathitkul and D.J. Harding, J. Phys. Chem. Solids, 72, 817 (2011); https://doi.org/10.1016/j.jpcs.2011.04.005
- P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, and T. Zhai, Nanoscale Horizons, 4, 26 (2019); https://doi.org/10.1039/C8NH00150
- B. R. Wahab, Y.S. Kim, K. Lee and H.S. Shin, J. Mater. Sci., 45, 2967 (2010); https://doi.org/10.1007/s10853-010-4294-x
- D.D.S. Biron, V.D. Santos and C.P. Bergmann, Mater. Res., 23, e20200080 (2020); https://doi.org/10.1590/1980-5373-mr-2020-0080.
- M.C. Akgun, Y.E. Kalay and H.E. Unalan, J. Mater. Res., 27, 1445 (2012); https://doi.org/10.1557/jmr.2012.92
- A. Moezzi, M. Cortie and A.M. McDonagh, Eur. J. Inorg. Chem., 2013, 1326 (2013); https://doi.org/10.1002/ejic.201201244
- L.A. Worku, M.G. Tadesse, R.K. Bachheti, A. Bachheti and A. Husen, Int. J. Biol. Macromol., 267, 131228 (2024); https://doi.org/10.1016/j.ijbiomac.2024.131228
References
H.D. Weldekirstos, P. Girma, A. Tedla, N. Aberra and A. Negash, Water Air Soil Pollut., 236, 580 (2025); https://doi.org/10.1007/s11270-025-08217-2
S. Goel, N. Sinha, H. Yadav, A.J. Joseph, and B. Kumar, Physica E, 91, 72 (2017); https://doi.org/10.1016/j.physe.2017.04.010
P.M. Patil, B. Sannakki, S.N. Mathad, E. Veena and S. Gandad, Acta Period. Technol., 54, 277 (2023); https://doi.org/10.2298/APT2354277
P.S. Krithika and J. Balavijayalakshmi, Mater. Res. Express, 6, 105023 (2019); https://doi.org/10.1088/2053-1591/ab3828
H. Hajovsky, G. Hu, Y. Koen, D. Sarma, W. Cui, D.S. Moore, J.L. Staudinger and R.P. Hanzlik, Chem. Res. Toxicol., 25, 1955 (2012); https://doi.org/10.1021/tx3002719
M.C. Wallace, K. Hamesch, M. Lunova, Y. Kim, R. Weiskirchen, P. Strnad and S.L. Friedman, Lab. Anim., 49(suppl), 21 (2015); https://doi.org/10.1177/0023677215573040
N.J. Waters, C.J. Waterfield, R.D. Farrant, E. Holmes and J.K. Nicholson, Chem. Res. Toxicol., 18, 639 (2005); https://doi.org/10.1021/tx049869b
J. Chilakapati, K. Shankar, M.C. Korrapati, R.A. Hill and H.M. Mehendale, Drug Metab. Dispos., 33, 1877 (2005); https://doi.org/10.1124/dmd.105.005520
Y.M. Koen, D. Sarma, H. Hajovsky, N.A. Galeva, T.D. Williams, J.L. Staudinger and R.P. Hanzlik, Chem. Res. Toxicol., 26, 564 (2013); https://doi.org/10.1021/tx400001x
Y. Zhang, Y. Jia, M. Li and L.A. Hou, Sci. Rep., 8, 9597 (2018); https://doi.org/10.1038/s41598-018-28015-7
S. Ahmed, D. Ibbotson, C. Somodi and P.J. Shamberger, ACS Appl. Energy Mater., 2, 530 (2024); https://doi.org/10.1021/acsaenm.3c00444
P. Li, Z.P. Xu, M.A. Hampton, D.T. Vu, L. Huang, V. Rudolph and A.V. Nguyen, J. Phys. Chem. C, 116, 10325 (2012); https://doi.org/10.1021/jp300045u
M. Kasaeian, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian and G. Bahlakeh, Appl. Surf. Sci., 462, 963 (2018); https://doi.org/10.1016/j.apsusc.2018.08.054
L. Wan, X. Wang, S. Yan, H. Yu, Z. Li and Z. Zou, CrystEngComm, 14, 154 (2012); https://doi.org/10.1039/C1CE05805C
K. Oravcová and V. Danielik, Acta Chim. Slov., 11, 51 (2018); https://doi.org/10.2478/acs-2018-0008
C. Pholnak, C. Sirisathitkul and D.J. Harding, J. Phys. Chem. Solids, 72, 817 (2011); https://doi.org/10.1016/j.jpcs.2011.04.005
P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, and T. Zhai, Nanoscale Horizons, 4, 26 (2019); https://doi.org/10.1039/C8NH00150
B. R. Wahab, Y.S. Kim, K. Lee and H.S. Shin, J. Mater. Sci., 45, 2967 (2010); https://doi.org/10.1007/s10853-010-4294-x
D.D.S. Biron, V.D. Santos and C.P. Bergmann, Mater. Res., 23, e20200080 (2020); https://doi.org/10.1590/1980-5373-mr-2020-0080.
M.C. Akgun, Y.E. Kalay and H.E. Unalan, J. Mater. Res., 27, 1445 (2012); https://doi.org/10.1557/jmr.2012.92
A. Moezzi, M. Cortie and A.M. McDonagh, Eur. J. Inorg. Chem., 2013, 1326 (2013); https://doi.org/10.1002/ejic.201201244
L.A. Worku, M.G. Tadesse, R.K. Bachheti, A. Bachheti and A. Husen, Int. J. Biol. Macromol., 267, 131228 (2024); https://doi.org/10.1016/j.ijbiomac.2024.131228