Copyright (c) 2025 Nitin Kumar kumar, Neetika lal, Vishal Nemaysh, Pratibha Mehta Luthra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis, in vitro Anticancer Activity, Topoisomerase-I Inhibition and DNA Binding Studies of Substituted Carbazole Semicarbazone Derivatives
Corresponding Author(s) : Nitin Kumar
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and deadly form of brain tumor in adults. In the search for more effective anticancer agents, tricyclic compounds such as carbazole derivatives have garnered considerable attention. This study aims to design and synthesize new substituted carbazole semicarbazone derivatives and evaluate their in vitro anticancer profile (IC50) on U87 MG glioma cell line based on MTT assay and DNA binding mechanism of one potent cytotoxic compound with calf thymus DNA via spectroscopic methods, topoisomerase assay and in silico approach. Reaction of 6-substituted carbazole-3-carbaldehyde with semicarbazide in 1:1 ratio reflux in ethanol gave 6-substituted carbazole semicarbazone derivatives and their structure elucidated by their melting point, NMR, FT-IR, HRMS spectroscopy. DNA binding studies of one potent cytotoxic carbazole derivative with ct-DNA (calf-thymus) in physiological buffer (pH 7.4) carried via various spectroscopic techniques like electronic absorption, circular dichroism (CD), viscosity test, topoisomerase assay and computational method. Two carbazole semicarbazone derivatives [(6-bromo-1,4-dimethyl-9H-carbazol-3-yl)-methylideneamino]urea (21) and [(6-methoxy-1,4-dimethyl-9H-carbazol-3-yl)methylideneamino]urea (22) found the best anticancer activities against the U87MG glioma cell line with the 50% inhibitory concentration (IC50) values IC50 = 23.3 ± 4 µM and 13.82 ± 3.86 µM, respectively also which even better than standard drug temozolomide (IC50 = 100 µM). Spectroscopic studies (UV absorption, circular dichroism), viscosity test and molecular docking analysis confirmed that carbazole semicarbazone (22) has groove binding mode with ct-DNA. Only topoisomerase assay, compound 22 showed groove binding mode interaction concentration dependent manner. These carbazole semicarbazone derivatives demonstrated potent anticancer activity against the U87MG glioma cell line. Spectroscopic analyses, viscosity test and molecular docking confirmed that compound 22 interacts with ct-DNA via a groove binding mode. Moreover, topoisomerase inhibition assays supported this interaction in a concentration-dependent manner, suggesting that compound 22 may exert its anticancer effect through DNA-targeted mechanisms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Hombach-Klonisch, M. Mehrpour, S. Shojaei, C. Harlos, M. Pitz, A. Hamai, K. Siemianowicz, W. Likus, E. Wiechec, B.D. Toyota, R. Hoshyar, A. Seyfoori, Z. Sepehri, S.R. Ande, F. Khadem, M. Akbari, A.M. Gorman, A. Samali, T. Klonisch and S. Ghavami, Pharmacol. Ther., 184, 13 (2018); https://doi.org/10.1016/j.pharmthera.2017.10.017
- D.R. Johnson, J.B. Guerin, C. Giannini, J.M. Morris, L.J. Eckel and T.J. Kaufmann, Radiographics, 37, 2164 (2017); https://doi.org/10.1148/rg.2017170037
- M.A. Patel, J.E. Kim, J. Ruzevick, G. Li and M. Lim, Cancers, 6, 1953 (2014); https://doi.org/10.3390/cancers6041953
- P.M. Luthra and N. Lal, Eur. J. Med. Chem., 109, 23 (2016); https://doi.org/10.1016/j.ejmech.2015.11.049
- A. Shergalis, A. Bankhead III, U. Luesakul, N. Muangsin and N. Neamati, Pharmacol. Rev., 70, 412 (2018); https://doi.org/10.1124/pr.117.014944
- R. Stupp, W.P. Mason, M.J. Van Den Bent, M. Weller, B. Fisher, M.J.B. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer and R.O. Mirimanoff, N. Engl. J. Med., 352, 987 (2005); https://doi.org/10.1056/NEJMoa043330
- S.U. Rehman, T. Sarwar, M.A. Husain, H.M. Ishqi and M. Tabish, Arch. Biochem. Biophys., 576, 49 (2015); https://doi.org/10.1016/j.abb.2015.03.024
- I. Ahmad and M. Ahmad, Int. J. Biol. Macromol., 79, 193 (2015); https://doi.org/10.1016/j.ijbiomac.2015.04.055
- R. Palchaudhuri and P.J. Hergenrother, Curr. Opin. Biotechnol., 18, 497 (2007); https://doi.org/10.1016/j.copbio.2007.09.006
- D. Sahoo, P. Bhattacharya and S. Chakravorti, J. Phys. Chem. B, 114, 2044 (2010); https://doi.org/10.1021/jp910766q
- S. Ponkarpagam, G. Mahalakshmi, K.N. Vennila and K.P. Elango, Spectrochim. Acta A Mol. Biomol. Spectrosc., 234, 118268 (2020); https://doi.org/10.1016/j.saa.2020.118268
- A. Chakraborty, A.K. Panda, R. Ghosh and A. Biswas, Arch. Biochem. Biophys., 665, 107 (2019); https://doi.org/10.1016/j.abb.2019.03.001
- N. Ataci, E. Ozcelik and N. Arsu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 204, 281 (2018); https://doi.org/10.1016/j.saa.2018.06.001
- S.B. Kou, K.L. Zhou, Z.Y. Lin, Y.Y. Lou, B.L. Wang, J.H. Shi and Y.X. Liu, J. Biomol. Struct. Dyn., 40, 2908 (2022); https://doi.org/10.1080/07391102.2020.1844057
- A. Głuszyńska, Eur. J. Med. Chem., 94, 405 (2015); https://doi.org/10.1016/j.ejmech.2015.02.059
- P. Luthra and N. Kumar, Mini Rev. Med. Chem., 21, 2929 (2021); https://doi.org/10.2174/1389557521666210521221808
- M. Bashir, A. Bano, A.S. Ijaz and B.A. Chaudhary, Molecules, 20, 13496 (2015); https://doi.org/10.3390/molecules200813496
- C. Asche amd M. Demeunynck, Anti-Cancer Agents Med. Chem., 7, 247 (2007); https://doi.org/10.2174/187152007780058678
- R.K. Mongre, C.B. Mishra, A. Prakash, S. Jung, B.S. Lee, S. Kumari, J.T. Hong and M.-S. Lee, Cancers, 11, 1245 (2019); https://doi.org/10.3390/cancers11091245
- G. Wang, S. Sun and H. Guo, Eur. J. Med. Chem., 229, 113999 (2022); https://doi.org/10.1016/j.ejmech.2021.113999
- A. Caruso, M.S. Sinicropi, J.-C. Lancelot, H. El-Kashef, C. Saturnino, G. Aubert, C. Ballandonne, A. Lesnard, T. Cresteil, P. Dallemagne and S. Rault, Bioorg. Med. Chem. Lett., 24, 467 (2014); https://doi.org/10.1016/j.bmcl.2013.12.047
- A. Panno, M.S. Sinicropi, A. Caruso, H. El‐Kashef, J.-C. Lancelot, G. Aubert, A. Lesnard, T. Cresteil and S. Rault, J. Heterocycl. Chem., 51(no. S1), E294 (2014); https://doi.org/10.1002/jhet.1951
- G.A. Çiftçi, H.E. Temel, Ş.U. Yıldırım, Z.A. Kaplancıklı, M.D. Altıntop and L. Genç, Med. Chem. Res., 22, 3751 (2013); https://doi.org/10.1007/s00044-012-0325-2
- N. Kumar, N. Lal, V. Nemaysh and P.M. Luthra, Asian J. Pharmaceutical Res., 14, 363 (2024); https://doi.org/10.52711/2231-5691.2024.00057
- N. Kumar, R. Kumar, V. Nemaysh, N. Lal and P.M. Luthra, RSC Adv., 6, 67925 (2016); https://doi.org/10.1039/C6RA12999D
- J. Ma, X. Ni, Y. Gao, K. Huang, Y. Wang, J. Liu and G. Gong, Chem. Pharm. Bull. (Tokyo), 67, 351 (2019); https://doi.org/10.1248/cpb.c18-00738
- A.C.N. da Cruz, D.J. Brondani, T.I. de Santana, L.O. da Silva, E.F. da O. Borba, A.R. de Faria, J.F.C. de Albuquerque, S. Piessard, R.M. Ximenes, B. Baratte, S. Bach, S. Ruchaud, F.J.B. Mendonça Jr., M.-A. Bazin, M.M. Rabello, M.Z. Hernandes, P. Marchand and T.G. da Silva, Pharmaceuticals, 12, 169 (2019); https://doi.org/10.3390/ph12040169
- H.-Q. Li, P.-C. Lv, T. Yan and H.-L. Zhu, Anti-Cancer Agents Med. Chem., 9, 471 (2009); https://doi.org/10.2174/1871520610909040471
- S. Dutta, S. Padhye, K.I. Priyadarsini and C. Newton, Bioorg. Med. Chem. Lett., 15, 2738 (2005); https://doi.org/10.1016/j.bmcl.2005.04.001
- S. Shukla, R.S. Srivastava, S.K. Shrivastava, A. Sodhi and P. Kumar, Asian Pac. J. Trop. Biomed., 2, S1040 (2012); https://doi.org/10.1016/S2221-1691(12)60358-X
- S.M. Ali, M.A.K. Azad, M. Jesmin, S. Ahsan, M.M. Rahman, J.A. Khanam, M.N. Islam and S.M.S. Shahriar, Asian Pac. J. Trop. Biomed., 2, 438 (2012); https://doi.org/10.1016/S2221-1691(12)60072-0
- N. Kumar, N. Lal, V. Nemaysh and P.M. Luthra, Bioorg. Chem., 100, 103911 (2020); https://doi.org/10.1016/j.bioorg.2020.103911
- N. Kumar, V. Nemaysh and P.M. Luthra, World J. Adv. Res. Rev., 16, 884 (2022); https://doi.org/10.30574/wjarr.2022.16.3.1402
- M. Gupta, S. Sharma, B.M. Sahoo and B.K. Banik, Curr. Bioact. Compd., 21, e050624230694 (2025); https://doi.org/10.2174/0115734072298680240521093006
- M. Stiborová, J. Poljaková, E. Martínková, L. Bořek-Dohalská, T. Eckschlager, R. Kizek and E. Frei, Interdiscip. Toxicol., 4, 98 (2011); https://doi.org/10.2478/v10102-011-0017-7
- Y.-J. Xue, M.-Y. Li, X.-J. Jin, C.-J. Zheng and H.-R. Piao, J. Enzyme Inhib. Med. Chem., 36, 296 (2021); https://doi.org/10.1080/14756366.2020.1850713
- Ł.J. Walczak and M. Herbet, Expert Opin. Drug Metab. Toxicol., 21, 1009 (2025); https://doi.org/10.1080/17425255.2025.2520561
- K. Pavić, I. Perković, M. Cindrić, M. Pranjić, I. Martin-Kleiner, M. Kralj, D. Schols, D. Hadjipavlou-Litina, A.-M. Katsori and B. Zorc, Eur. J. Med. Chem., 86, 502 (2014); https://doi.org/10.1016/j.ejmech.2014.09.013
- A.K. Ghosh and M. Brindisi, J. Med. Chem., 63, 2751 (2020); https://doi.org/10.1021/acs.jmedchem.9b01541
- G. Bao, B. Du, Y. Ma, M. Zhao, P. Gong and X. Zhai, Med. Chem., 12, 489 (2016); https://doi.org/10.2174/1573406412666160107113343
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO; 2-B
- M.A. Lill and M.L. Danielson, J. Comput. Aided Mol. Des., 25, 13 (2011); https://doi.org/10.1007/s10822-010-9395-8
- V. Nemaysh and P.M. Luthra, RSC Adv., 7, 37612 (2017); https://doi.org/10.1039/C7RA01305A
- E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
- R. Anwer, N. Ahmad, K.I. Al Qumaizi, O.A. Al Khamees, W.M. Al Shaqha and T. Fatma, J. Mol. Recognit., 30, e2599 (2017); https://doi.org/10.1002/jmr.2599
- H.A. Alomar, W.M. El Kady, A.A. Mandour, A.A. Naim, N.I. Ghali, T.A. Ibrahim and N. Fathallah, Results Chem., 14, 102081 (2025); https://doi.org/10.1016/j.rechem.2025.102081
- F. Merdekawati, J. Appl. Pharm. Sci., 8, 119 (2018); https://doi.org/10.7324/JAPS.2018.8918
- M. Agarwal, O. Afzal, Salahuddin, A.S.A. Altamimi, M.A. Alamri, M.A. Alossaimi, V. Sharma and M.J. Ahsan, ACS Omega, 8, 26837 (2023); https://doi.org/10.1021/acsomega.3c01462
- P. Banerjee, E. Kemmler, M. Dunkel and R. Preissner, Nucleic Acids Res., 52(W1), W513 (2024); https://doi.org/10.1093/nar/gkae303
- J. Lu, Q. Sun, J.-L. Li, W. Gu, J.-L. Tian, X. Liu and S.-P. Yan, J. Coord. Chem., 66, 3280 (2013); https://doi.org/10.1080/00958972.2013.832228
- N. Shahabadi, S.M. Fili and F. Kheirdoosh, J. Photochem. Photobiol. B, 128, 20 (2013); https://doi.org/10.1016/j.jphotobiol.2013.08.005
- J. Kasparkova, O. Vrana, N. Farrell and V. Brabec, J. Inorg. Biochem., 98, 1560 (2004); https://doi.org/10.1016/j.jinorgbio.2004.04.019
- N. Akbay, Z. Koksal, T. Taskin-Tok and A. Uzgoren-Baran, Hacettepe J. Biol. Chem., 47, 177 (2019); https://doi.org/10.15671/hjbc.517481
- Q. Wang, X. Wang, Z. Yu, X. Yuan and K. Jiao, Int. J. Electrochem. Sci., 6, 5470 (2011); https://doi.org/10.1016/S1452-3981(23)18421-5
- M.J. Waring, Humangenetik, 9, 234 (1970); https://doi.org/10.1007/BF00279229
- N. Shahabadi, S. Kashanian and F. Darabi, DNA Cell Biol., 28, 589 (2009); https://doi.org/10.1089/dna.2009.0881
- D.S. Sappal, A.K. McClendon, J.A. Fleming, V. Thoroddsen, K. Connolly, C. Reimer, R.K. Blackman, C.E. Bulawa, N. Osheroff, P. Charlton and L.A. Rudolph-Owen, Mol. Cancer Ther., 3, 47 (2004); https://doi.org/10.1158/1535-7163.47.3.1
- Y. Pommier, J.M. Covey, D. Kerrigan, J. Markovits and R. Pham, Nucleic Acids Res., 15, 6713 (1987); https://doi.org/10.1093/nar/15.16.6713
- J. Dai, C. Punchihewa, P. Mistry, A.T. Ooi and D. Yang, J. Biol. Chem., 279, 46096 (2004); https://doi.org/10.1074/jbc.M404053200
- R. Mishra, A.S. Gaur, R. Chandra and D. Kumar, Int. J. Pharm. Chem. Anal., 2, 161 (2015).
- O. Kennard, Pure Appl. Chem., 65, 1213 (1993); https://doi.org/10.1351/pac199365061213
- H.K. Srivastava, M. Chourasia, D. Kumar and G.N. Sastry, J. Chem. Inf. Model., 51, 558 (2011); https://doi.org/10.1021/ci100474n
- U. Issar, R. Arora and R. Kakkar, J. Biomol. Struct. Dyn., 42, 4537 (2024); https://doi.org/10.1080/07391102.2023.2220807
References
S. Hombach-Klonisch, M. Mehrpour, S. Shojaei, C. Harlos, M. Pitz, A. Hamai, K. Siemianowicz, W. Likus, E. Wiechec, B.D. Toyota, R. Hoshyar, A. Seyfoori, Z. Sepehri, S.R. Ande, F. Khadem, M. Akbari, A.M. Gorman, A. Samali, T. Klonisch and S. Ghavami, Pharmacol. Ther., 184, 13 (2018); https://doi.org/10.1016/j.pharmthera.2017.10.017
D.R. Johnson, J.B. Guerin, C. Giannini, J.M. Morris, L.J. Eckel and T.J. Kaufmann, Radiographics, 37, 2164 (2017); https://doi.org/10.1148/rg.2017170037
M.A. Patel, J.E. Kim, J. Ruzevick, G. Li and M. Lim, Cancers, 6, 1953 (2014); https://doi.org/10.3390/cancers6041953
P.M. Luthra and N. Lal, Eur. J. Med. Chem., 109, 23 (2016); https://doi.org/10.1016/j.ejmech.2015.11.049
A. Shergalis, A. Bankhead III, U. Luesakul, N. Muangsin and N. Neamati, Pharmacol. Rev., 70, 412 (2018); https://doi.org/10.1124/pr.117.014944
R. Stupp, W.P. Mason, M.J. Van Den Bent, M. Weller, B. Fisher, M.J.B. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer and R.O. Mirimanoff, N. Engl. J. Med., 352, 987 (2005); https://doi.org/10.1056/NEJMoa043330
S.U. Rehman, T. Sarwar, M.A. Husain, H.M. Ishqi and M. Tabish, Arch. Biochem. Biophys., 576, 49 (2015); https://doi.org/10.1016/j.abb.2015.03.024
I. Ahmad and M. Ahmad, Int. J. Biol. Macromol., 79, 193 (2015); https://doi.org/10.1016/j.ijbiomac.2015.04.055
R. Palchaudhuri and P.J. Hergenrother, Curr. Opin. Biotechnol., 18, 497 (2007); https://doi.org/10.1016/j.copbio.2007.09.006
D. Sahoo, P. Bhattacharya and S. Chakravorti, J. Phys. Chem. B, 114, 2044 (2010); https://doi.org/10.1021/jp910766q
S. Ponkarpagam, G. Mahalakshmi, K.N. Vennila and K.P. Elango, Spectrochim. Acta A Mol. Biomol. Spectrosc., 234, 118268 (2020); https://doi.org/10.1016/j.saa.2020.118268
A. Chakraborty, A.K. Panda, R. Ghosh and A. Biswas, Arch. Biochem. Biophys., 665, 107 (2019); https://doi.org/10.1016/j.abb.2019.03.001
N. Ataci, E. Ozcelik and N. Arsu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 204, 281 (2018); https://doi.org/10.1016/j.saa.2018.06.001
S.B. Kou, K.L. Zhou, Z.Y. Lin, Y.Y. Lou, B.L. Wang, J.H. Shi and Y.X. Liu, J. Biomol. Struct. Dyn., 40, 2908 (2022); https://doi.org/10.1080/07391102.2020.1844057
A. Głuszyńska, Eur. J. Med. Chem., 94, 405 (2015); https://doi.org/10.1016/j.ejmech.2015.02.059
P. Luthra and N. Kumar, Mini Rev. Med. Chem., 21, 2929 (2021); https://doi.org/10.2174/1389557521666210521221808
M. Bashir, A. Bano, A.S. Ijaz and B.A. Chaudhary, Molecules, 20, 13496 (2015); https://doi.org/10.3390/molecules200813496
C. Asche amd M. Demeunynck, Anti-Cancer Agents Med. Chem., 7, 247 (2007); https://doi.org/10.2174/187152007780058678
R.K. Mongre, C.B. Mishra, A. Prakash, S. Jung, B.S. Lee, S. Kumari, J.T. Hong and M.-S. Lee, Cancers, 11, 1245 (2019); https://doi.org/10.3390/cancers11091245
G. Wang, S. Sun and H. Guo, Eur. J. Med. Chem., 229, 113999 (2022); https://doi.org/10.1016/j.ejmech.2021.113999
A. Caruso, M.S. Sinicropi, J.-C. Lancelot, H. El-Kashef, C. Saturnino, G. Aubert, C. Ballandonne, A. Lesnard, T. Cresteil, P. Dallemagne and S. Rault, Bioorg. Med. Chem. Lett., 24, 467 (2014); https://doi.org/10.1016/j.bmcl.2013.12.047
A. Panno, M.S. Sinicropi, A. Caruso, H. El‐Kashef, J.-C. Lancelot, G. Aubert, A. Lesnard, T. Cresteil and S. Rault, J. Heterocycl. Chem., 51(no. S1), E294 (2014); https://doi.org/10.1002/jhet.1951
G.A. Çiftçi, H.E. Temel, Ş.U. Yıldırım, Z.A. Kaplancıklı, M.D. Altıntop and L. Genç, Med. Chem. Res., 22, 3751 (2013); https://doi.org/10.1007/s00044-012-0325-2
N. Kumar, N. Lal, V. Nemaysh and P.M. Luthra, Asian J. Pharmaceutical Res., 14, 363 (2024); https://doi.org/10.52711/2231-5691.2024.00057
N. Kumar, R. Kumar, V. Nemaysh, N. Lal and P.M. Luthra, RSC Adv., 6, 67925 (2016); https://doi.org/10.1039/C6RA12999D
J. Ma, X. Ni, Y. Gao, K. Huang, Y. Wang, J. Liu and G. Gong, Chem. Pharm. Bull. (Tokyo), 67, 351 (2019); https://doi.org/10.1248/cpb.c18-00738
A.C.N. da Cruz, D.J. Brondani, T.I. de Santana, L.O. da Silva, E.F. da O. Borba, A.R. de Faria, J.F.C. de Albuquerque, S. Piessard, R.M. Ximenes, B. Baratte, S. Bach, S. Ruchaud, F.J.B. Mendonça Jr., M.-A. Bazin, M.M. Rabello, M.Z. Hernandes, P. Marchand and T.G. da Silva, Pharmaceuticals, 12, 169 (2019); https://doi.org/10.3390/ph12040169
H.-Q. Li, P.-C. Lv, T. Yan and H.-L. Zhu, Anti-Cancer Agents Med. Chem., 9, 471 (2009); https://doi.org/10.2174/1871520610909040471
S. Dutta, S. Padhye, K.I. Priyadarsini and C. Newton, Bioorg. Med. Chem. Lett., 15, 2738 (2005); https://doi.org/10.1016/j.bmcl.2005.04.001
S. Shukla, R.S. Srivastava, S.K. Shrivastava, A. Sodhi and P. Kumar, Asian Pac. J. Trop. Biomed., 2, S1040 (2012); https://doi.org/10.1016/S2221-1691(12)60358-X
S.M. Ali, M.A.K. Azad, M. Jesmin, S. Ahsan, M.M. Rahman, J.A. Khanam, M.N. Islam and S.M.S. Shahriar, Asian Pac. J. Trop. Biomed., 2, 438 (2012); https://doi.org/10.1016/S2221-1691(12)60072-0
N. Kumar, N. Lal, V. Nemaysh and P.M. Luthra, Bioorg. Chem., 100, 103911 (2020); https://doi.org/10.1016/j.bioorg.2020.103911
N. Kumar, V. Nemaysh and P.M. Luthra, World J. Adv. Res. Rev., 16, 884 (2022); https://doi.org/10.30574/wjarr.2022.16.3.1402
M. Gupta, S. Sharma, B.M. Sahoo and B.K. Banik, Curr. Bioact. Compd., 21, e050624230694 (2025); https://doi.org/10.2174/0115734072298680240521093006
M. Stiborová, J. Poljaková, E. Martínková, L. Bořek-Dohalská, T. Eckschlager, R. Kizek and E. Frei, Interdiscip. Toxicol., 4, 98 (2011); https://doi.org/10.2478/v10102-011-0017-7
Y.-J. Xue, M.-Y. Li, X.-J. Jin, C.-J. Zheng and H.-R. Piao, J. Enzyme Inhib. Med. Chem., 36, 296 (2021); https://doi.org/10.1080/14756366.2020.1850713
Ł.J. Walczak and M. Herbet, Expert Opin. Drug Metab. Toxicol., 21, 1009 (2025); https://doi.org/10.1080/17425255.2025.2520561
K. Pavić, I. Perković, M. Cindrić, M. Pranjić, I. Martin-Kleiner, M. Kralj, D. Schols, D. Hadjipavlou-Litina, A.-M. Katsori and B. Zorc, Eur. J. Med. Chem., 86, 502 (2014); https://doi.org/10.1016/j.ejmech.2014.09.013
A.K. Ghosh and M. Brindisi, J. Med. Chem., 63, 2751 (2020); https://doi.org/10.1021/acs.jmedchem.9b01541
G. Bao, B. Du, Y. Ma, M. Zhao, P. Gong and X. Zhai, Med. Chem., 12, 489 (2016); https://doi.org/10.2174/1573406412666160107113343
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO; 2-B
M.A. Lill and M.L. Danielson, J. Comput. Aided Mol. Des., 25, 13 (2011); https://doi.org/10.1007/s10822-010-9395-8
V. Nemaysh and P.M. Luthra, RSC Adv., 7, 37612 (2017); https://doi.org/10.1039/C7RA01305A
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
R. Anwer, N. Ahmad, K.I. Al Qumaizi, O.A. Al Khamees, W.M. Al Shaqha and T. Fatma, J. Mol. Recognit., 30, e2599 (2017); https://doi.org/10.1002/jmr.2599
H.A. Alomar, W.M. El Kady, A.A. Mandour, A.A. Naim, N.I. Ghali, T.A. Ibrahim and N. Fathallah, Results Chem., 14, 102081 (2025); https://doi.org/10.1016/j.rechem.2025.102081
F. Merdekawati, J. Appl. Pharm. Sci., 8, 119 (2018); https://doi.org/10.7324/JAPS.2018.8918
M. Agarwal, O. Afzal, Salahuddin, A.S.A. Altamimi, M.A. Alamri, M.A. Alossaimi, V. Sharma and M.J. Ahsan, ACS Omega, 8, 26837 (2023); https://doi.org/10.1021/acsomega.3c01462
P. Banerjee, E. Kemmler, M. Dunkel and R. Preissner, Nucleic Acids Res., 52(W1), W513 (2024); https://doi.org/10.1093/nar/gkae303
J. Lu, Q. Sun, J.-L. Li, W. Gu, J.-L. Tian, X. Liu and S.-P. Yan, J. Coord. Chem., 66, 3280 (2013); https://doi.org/10.1080/00958972.2013.832228
N. Shahabadi, S.M. Fili and F. Kheirdoosh, J. Photochem. Photobiol. B, 128, 20 (2013); https://doi.org/10.1016/j.jphotobiol.2013.08.005
J. Kasparkova, O. Vrana, N. Farrell and V. Brabec, J. Inorg. Biochem., 98, 1560 (2004); https://doi.org/10.1016/j.jinorgbio.2004.04.019
N. Akbay, Z. Koksal, T. Taskin-Tok and A. Uzgoren-Baran, Hacettepe J. Biol. Chem., 47, 177 (2019); https://doi.org/10.15671/hjbc.517481
Q. Wang, X. Wang, Z. Yu, X. Yuan and K. Jiao, Int. J. Electrochem. Sci., 6, 5470 (2011); https://doi.org/10.1016/S1452-3981(23)18421-5
M.J. Waring, Humangenetik, 9, 234 (1970); https://doi.org/10.1007/BF00279229
N. Shahabadi, S. Kashanian and F. Darabi, DNA Cell Biol., 28, 589 (2009); https://doi.org/10.1089/dna.2009.0881
D.S. Sappal, A.K. McClendon, J.A. Fleming, V. Thoroddsen, K. Connolly, C. Reimer, R.K. Blackman, C.E. Bulawa, N. Osheroff, P. Charlton and L.A. Rudolph-Owen, Mol. Cancer Ther., 3, 47 (2004); https://doi.org/10.1158/1535-7163.47.3.1
Y. Pommier, J.M. Covey, D. Kerrigan, J. Markovits and R. Pham, Nucleic Acids Res., 15, 6713 (1987); https://doi.org/10.1093/nar/15.16.6713
J. Dai, C. Punchihewa, P. Mistry, A.T. Ooi and D. Yang, J. Biol. Chem., 279, 46096 (2004); https://doi.org/10.1074/jbc.M404053200
R. Mishra, A.S. Gaur, R. Chandra and D. Kumar, Int. J. Pharm. Chem. Anal., 2, 161 (2015).
O. Kennard, Pure Appl. Chem., 65, 1213 (1993); https://doi.org/10.1351/pac199365061213
H.K. Srivastava, M. Chourasia, D. Kumar and G.N. Sastry, J. Chem. Inf. Model., 51, 558 (2011); https://doi.org/10.1021/ci100474n
U. Issar, R. Arora and R. Kakkar, J. Biomol. Struct. Dyn., 42, 4537 (2024); https://doi.org/10.1080/07391102.2023.2220807