Copyright (c) 2025 JAYANTHI R., Suresh Ranganathan, JAYAPRAKASH N.

This work is licensed under a Creative Commons Attribution 4.0 International License.
One-Step Formation of CoV2O6 Nanostructure and its Photocatalytic Activity
Corresponding Author(s) : R. Suresh
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
A one-step thermal decomposition method was proposed for the synthesis of cobalt vanadate (CoV2O6) nanostructures using ammonium metavanadate (NH4VO3) and cobalt acetate [Co(CH3COO)2·4H2O] as precursors. No solvents and additional chemicals were used in this synthesis method. The as-prepared CoV2O6 nanostructure was characterized by energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Raman spectroscopic techniques. These techniques determined the crystallinity, crystal structure and metal-oxygen (V-O and Co-O) bonds of CoV2O6 nanostructure. Ultraviolet (UV)-visible spectroscopic study infers the characteristic electronic transitions and band-gap energy of CoV2O6 nanostructure. The electron microscopic investigations affirmed the formation of nanostructured particles. All studies concluded the formation of CoV2O6 nanostructure. The photocatalytic ability of CoV2O6 nanostructure in the degradation (decolourization) of methylene blue, sunset yellow and brilliant blue dyes in presence of visible light and hydrogen peroxide was evaluated. The CoV2O6 nanostructure showed a maximum efficiency towards a methylene blue degradation reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Banerjee and K. Dutta, Int. J. Energy Res., 46, 3983 (2022); https://doi.org/10.1002/er.7492
- I. Ahmad, G. Li, A. Al-Qattan, A.J. Obaidullah, A. Mahal, M. Duan, K. Ali, Y.Y. Ghadi and I. Ali, Mater. Today Sustain., 25, 100666 (2024); https://doi.org/10.1016/j.mtsust.2024.100666
- A. George, S. Rahul, A. Dhayal Raj, Q. Yang, G. Jayakumar, S. John Sundaram, M. Selvaraj, M.W. Alam, P. Rosaiah and J.V. Kumar, Inorg. Chem. Commun., 168, 112890 (2024); https://doi.org/10.1016/j.inoche.2024.112890
- F. Tagnaouti Moumnani, K. Khallouk, R. Elkhalfaouy, D. Moussaid, O. Mertah, A. Solhy, A. Barakat and A. Kherbeche, React. Kinet. Mech. Catal., 137, 1157 (2024); https://doi.org/10.1007/s11144-023-02553-2
- V. Sivakumar, R. Suresh, K. Giribabu and V. Narayanan, Solid State Sci., 39, 34 (2015); https://doi.org/10.1016/j.solidstatesciences.2014.10.016
- S. Kumar and P.D. Sahare, Nano, 8, 1350007 (2013); https://doi.org/10.1142/S1793292013500070
- R. Lakshmana Naik, T. Bala Narsaiah, P. Justin, A. Naveen Kumar, M.N. Somashekar, N. Raghavendra, C.R. Ravikumar, A. Ahmad Khan and M.S. Santosh, Mater. Sci. Eng. B, 298, 116861 (2023); https://doi.org/10.1016/j.mseb.2023.116861
- M.T.H. Bhuiyan, M.A. Rahman, M.A. Rahman, R. Sultana, M.R. Mostafa, A.H. Tania and M.A.R. Sarker, Cogent Physics, 3, 1265778 (2016); https://doi.org/10.1080/23311940.2016.1265778
- E. Baudrin, S. Laruelle, S. Denis, M. Touboul and J.M. Tarascon, Solid State Ion., 123, 139 (1999); https://doi.org/10.1016/S0167-2738(99)00096-X
- Y.T. Kim, K.B. Gopukumar, K.B. Kim and B.W. Cho, J. Power Sources, 112, 504 (2002); https://doi.org/10.1016/S0378-7753(02)00462-7
- D. von Dreifus, R. Pereira, A.D. Rodrigues, E.C. Pereira and A.J.A. de Oliveira, Ceram. Int., 44, 19397 (2018); https://doi.org/10.1016/j.ceramint.2018.07.171
- M. Markkula, A.M. Arevalo-Lopez and J. Paul Attfield, J. Solid State Chem., 192, 390 (2012); https://doi.org/10.1016/j.jssc.2012.04.029
- C.B. Liu, Z.Z. He, S.L. Wang, M. Yang, Y. Liu, Y.J. Liu, R. Chen, H.P. Zhu, C. Dong, J.Z. Ke, Z.W. Ouyang, Z.C. Xia and J.F. Wang, J. Phys. Condens. Matter, 31, 375802 (2019); https://doi.org/10.1088/1361-648X/ab26fe
- R.O. Alves de Lima, A.P. Bazo, D.M.F. Salvadori, C.M. Rech, D. de Palma Oliveira and G. de Aragão Umbuzeiro, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626, 53 (2007); https://doi.org/10.1016/j.mrgentox.2006.08.002
- S. Kobylewski and M.F. Jacobson, Int. J. Occup. Environ. Health, 18, 220 (2012); https://doi.org/10.1179/1077352512Z.00000000034
- G. Wang and H. Cheng, Molecules, 28, 3706 (2023); https://doi.org/10.3390/molecules28093706
- Y. Wu, C. Wang, L. Wang and C. Hou, Catalysts, 15, 391 (2025); https://doi.org/10.3390/catal15040391
- M. Settu, G. Govindhan, B. Thirugnanam, D. Divya, M. Selvamani and M.R. Karim, J. Inorg. Organomet. Polym. Mater., 35, 2502 (2025); https://doi.org/10.1007/s10904-024-03381-0
- S.O. Rab, F.M.A. Altalbawy, L. Baldaniya, A. Kumar, R. M M, M. Kundlas, G.C. Sharma, K.K. Joshi, S. Saydaxmetova and M.K. Abosaoda, Inorg. Chem. Commun., 174, 114067 (2025); https://doi.org/10.1016/j.inoche.2025.114067
- P. Sasikala, J. Madhavan, T. Bavani, M. Preeyanghaa and B. Neppolian, Chem. Phys., 592, 112618 (2025); https://doi.org/10.1016/j.chemphys.2025.112618
- M. El ouardi, M. Arab, M. Saadi, A. BaQais and H. Ait Ahsaine, Nano Mater. Sci., (2024); https://doi.org/10.1016/j.nanoms.2024.11.002
- M.A. Ali, I.M. Maafa and I.Y. Qudsieh, Water, 16, 453 (2024); https://doi.org/10.3390/w16030453
- T. Zhang and Q. Li, J. Solid State Chem., 315, 123473 (2022); https://doi.org/10.1016/j.jssc.2022.123473
- T. Wanjun and C. Donghua, Chem. Pap., 61, 329 (2007); https://doi.org/10.2478/s11696-007-0042-3
- D. Govindarajan, V. Uma Shankar and R. Gopalakrishnan, J. Mater. Sci. Mater. Electron., 30, 16142 (2019); https://doi.org/10.1007/s10854-019-01984-9
- M.A. Yewale, A.V.S.L. Sai Bharadwaj, R.A. Kadam, N.T. Shelke, A.M. Teli, S.A. Beknalkar, V. Kumar, M.W. Alam and D.K. Shin, Mater. Sci. Eng. B, 307, 117464 (2024); https://doi.org/10.1016/j.mseb.2024.117464
- X. He, J. Jiang, H. Tian, Y. Niu, Z. Li, Y. Hu, J. Fan and C. Wang, RSC Adv., 9, 9475 (2019); https://doi.org/10.1039/C8RA10041A
- S.A. Hassanzadeh-Tabrizi, J. Alloys Compd., 968, 171914 (2023); https://doi.org/10.1016/j.jallcom.2023.171914
- S. Pasieczna-Patkowska, M. Cichy and J. Flieger, Molecules, 30, 684 (2025); https://doi.org/10.3390/molecules30030684
- A. Surca and B. Orel, Electrochim. Acta, 44, 3051 (1999); https://doi.org/10.1016/S0013-4686(99)00019-5
- P. Yasodha, M. Premila, A. Bharathi, M.C. Valsakumar, R. Rajaraman and C.S. Sundar, J. Solid State Chem., 183, 2602 (2010); https://doi.org/10.1016/j.jssc.2010.09.003
- N. Kotov, M.M. Keskitalo and C.M. Johnson, Spectrochim. Acta A Mol. Biomol. Spectrosc., 330, 125640 (2025); https://doi.org/10.1016/j.saa.2024.125640
- J.P. Peña, P. Bouvier, M. Hneda, C. Goujon and O. Isnard, J. Phys. Chem. Solids, 154, 110034 (2021); https://doi.org/10.1016/j.jpcs.2021.110034
- J. Sánchez-Martín, P. Bouvier, G. Garbarino, S. Gallego-Parra, O. Isnard, P. Rodríguez-Hernández, A. Muñoz, D. Errandonea and J. Pellicer-Porres, J. Phys. Chem. C, 129, 10364 (2025); https://doi.org/10.1021/acs.jpcc.5c02341
- S.K. Jayaraj, V. Sadishkumar, T. Arun and P. Thangadurai, Mater. Sci. Semicond. Process., 85, 122 (2018); https://doi.org/10.1016/j.mssp.2018.06.006
- E. Gungor, T. Gungor, D. Caliskan and E. Ozbay, Acta Phys. Pol. A, 131, 500 (2017); https://doi.org/10.12693/APhysPolA.131.500
- K. Schneider, J. Mater. Sci. Mater. Electron., 31, 10478 (2020); https://doi.org/10.1007/s10854-020-03596-0
- S. Zang, X. Cai, M. Chen, D. Teng, F. Jing, Z. Leng, Y. Zhou and F. Lin, Nanomaterials, 12, 1931 (2022); https://doi.org/10.3390/nano12111931
- S. Estrada-Flores, A. Martínez-Luévanos, C.M. Perez-Berumen, L.A. García-Cerda and T.E. Flores-Guia, Bol. Soc. Esp. Ceram. Vidr., 59, 209 (2020); https://doi.org/10.1016/j.bsecv.2019.10.003
- Y. Zhou, Y. Wu, D. Guo, J. Li, D. Chu, S. Na, M. Yu, D. Li, G. Sui and D.F. Chai, J. Alloys Compd., 963, 171133 (2023); https://doi.org/10.1016/j.jallcom.2023.171133
- S. Mondal, M.E. De Anda Reyes and U. Pal, RSC Adv., 7, 8633 (2017); https://doi.org/10.1039/C6RA28640B
- P.K. Panda, R. Kamal, R. Pattanaik, D. Pradhan and S.K. Dash, Asian J. Chem., 37, 123 (2024); https://doi.org/10.14233/ajchem.2025.32904
- Z. Kalaycıoğlu, B. Özuğur Uysal, Ö. Pekcan and F.B. Erim, ACS Omega, 8, 13004 (2023); https://doi.org/10.1021/acsomega.3c00198
- A.A. Abd El Khalk, M.A. Betiha, A.S. Mansour, M.G. Abd El Wahed and A.M. Al-Sabagh, ACS Omega, 6, 26210 (2021); https://doi.org/10.1021/acsomega.1c03195
- A.T. Bişgin, J. AOAC Int., 101, 1850 (2018); https://doi.org/10.5740/jaoacint.18-0089
- A. Soni, D.C. Parameswarappa, M. Tyagi, N.K. Sahoo, A. Dogra, R.R. Pappuru and J. Chhablani, Semin. Ophthalmol., 37, 117 (2022); https://doi.org/10.1080/08820538.2021.1928717
- D. Negoescu, P. Oancea, A. Răducan and M. Puiu, Rev. Roum. Chim., 66, 281 (2021); https://doi.org/10.33224/rrch.2021.66.3.08
- M. Alamzeb, S. Faryad, I. Ullah, J. Hussain and W.N. Setzer, J. Fluoresc., (2025); https://doi.org/10.1007/s10895-025-04218-w
- M. Pannerselvam, V. Siva, A. Murugan, A.S. Shameem, T. Bavani, S. Jhelai, S. Shanmugan, I.H.S. Ali and K. Kannan, Nanomaterials, 15, 545 (2025); https://doi.org/10.3390/nano15070545
- Y. Cao, Y. Ren, J. Zhang, T. Xie and Y. Lin, Opt. Mater., 121, 111637 (2021); https://doi.org/10.1016/j.optmat.2021.111637
References
J. Banerjee and K. Dutta, Int. J. Energy Res., 46, 3983 (2022); https://doi.org/10.1002/er.7492
I. Ahmad, G. Li, A. Al-Qattan, A.J. Obaidullah, A. Mahal, M. Duan, K. Ali, Y.Y. Ghadi and I. Ali, Mater. Today Sustain., 25, 100666 (2024); https://doi.org/10.1016/j.mtsust.2024.100666
A. George, S. Rahul, A. Dhayal Raj, Q. Yang, G. Jayakumar, S. John Sundaram, M. Selvaraj, M.W. Alam, P. Rosaiah and J.V. Kumar, Inorg. Chem. Commun., 168, 112890 (2024); https://doi.org/10.1016/j.inoche.2024.112890
F. Tagnaouti Moumnani, K. Khallouk, R. Elkhalfaouy, D. Moussaid, O. Mertah, A. Solhy, A. Barakat and A. Kherbeche, React. Kinet. Mech. Catal., 137, 1157 (2024); https://doi.org/10.1007/s11144-023-02553-2
V. Sivakumar, R. Suresh, K. Giribabu and V. Narayanan, Solid State Sci., 39, 34 (2015); https://doi.org/10.1016/j.solidstatesciences.2014.10.016
S. Kumar and P.D. Sahare, Nano, 8, 1350007 (2013); https://doi.org/10.1142/S1793292013500070
R. Lakshmana Naik, T. Bala Narsaiah, P. Justin, A. Naveen Kumar, M.N. Somashekar, N. Raghavendra, C.R. Ravikumar, A. Ahmad Khan and M.S. Santosh, Mater. Sci. Eng. B, 298, 116861 (2023); https://doi.org/10.1016/j.mseb.2023.116861
M.T.H. Bhuiyan, M.A. Rahman, M.A. Rahman, R. Sultana, M.R. Mostafa, A.H. Tania and M.A.R. Sarker, Cogent Physics, 3, 1265778 (2016); https://doi.org/10.1080/23311940.2016.1265778
E. Baudrin, S. Laruelle, S. Denis, M. Touboul and J.M. Tarascon, Solid State Ion., 123, 139 (1999); https://doi.org/10.1016/S0167-2738(99)00096-X
Y.T. Kim, K.B. Gopukumar, K.B. Kim and B.W. Cho, J. Power Sources, 112, 504 (2002); https://doi.org/10.1016/S0378-7753(02)00462-7
D. von Dreifus, R. Pereira, A.D. Rodrigues, E.C. Pereira and A.J.A. de Oliveira, Ceram. Int., 44, 19397 (2018); https://doi.org/10.1016/j.ceramint.2018.07.171
M. Markkula, A.M. Arevalo-Lopez and J. Paul Attfield, J. Solid State Chem., 192, 390 (2012); https://doi.org/10.1016/j.jssc.2012.04.029
C.B. Liu, Z.Z. He, S.L. Wang, M. Yang, Y. Liu, Y.J. Liu, R. Chen, H.P. Zhu, C. Dong, J.Z. Ke, Z.W. Ouyang, Z.C. Xia and J.F. Wang, J. Phys. Condens. Matter, 31, 375802 (2019); https://doi.org/10.1088/1361-648X/ab26fe
R.O. Alves de Lima, A.P. Bazo, D.M.F. Salvadori, C.M. Rech, D. de Palma Oliveira and G. de Aragão Umbuzeiro, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626, 53 (2007); https://doi.org/10.1016/j.mrgentox.2006.08.002
S. Kobylewski and M.F. Jacobson, Int. J. Occup. Environ. Health, 18, 220 (2012); https://doi.org/10.1179/1077352512Z.00000000034
G. Wang and H. Cheng, Molecules, 28, 3706 (2023); https://doi.org/10.3390/molecules28093706
Y. Wu, C. Wang, L. Wang and C. Hou, Catalysts, 15, 391 (2025); https://doi.org/10.3390/catal15040391
M. Settu, G. Govindhan, B. Thirugnanam, D. Divya, M. Selvamani and M.R. Karim, J. Inorg. Organomet. Polym. Mater., 35, 2502 (2025); https://doi.org/10.1007/s10904-024-03381-0
S.O. Rab, F.M.A. Altalbawy, L. Baldaniya, A. Kumar, R. M M, M. Kundlas, G.C. Sharma, K.K. Joshi, S. Saydaxmetova and M.K. Abosaoda, Inorg. Chem. Commun., 174, 114067 (2025); https://doi.org/10.1016/j.inoche.2025.114067
P. Sasikala, J. Madhavan, T. Bavani, M. Preeyanghaa and B. Neppolian, Chem. Phys., 592, 112618 (2025); https://doi.org/10.1016/j.chemphys.2025.112618
M. El ouardi, M. Arab, M. Saadi, A. BaQais and H. Ait Ahsaine, Nano Mater. Sci., (2024); https://doi.org/10.1016/j.nanoms.2024.11.002
M.A. Ali, I.M. Maafa and I.Y. Qudsieh, Water, 16, 453 (2024); https://doi.org/10.3390/w16030453
T. Zhang and Q. Li, J. Solid State Chem., 315, 123473 (2022); https://doi.org/10.1016/j.jssc.2022.123473
T. Wanjun and C. Donghua, Chem. Pap., 61, 329 (2007); https://doi.org/10.2478/s11696-007-0042-3
D. Govindarajan, V. Uma Shankar and R. Gopalakrishnan, J. Mater. Sci. Mater. Electron., 30, 16142 (2019); https://doi.org/10.1007/s10854-019-01984-9
M.A. Yewale, A.V.S.L. Sai Bharadwaj, R.A. Kadam, N.T. Shelke, A.M. Teli, S.A. Beknalkar, V. Kumar, M.W. Alam and D.K. Shin, Mater. Sci. Eng. B, 307, 117464 (2024); https://doi.org/10.1016/j.mseb.2024.117464
X. He, J. Jiang, H. Tian, Y. Niu, Z. Li, Y. Hu, J. Fan and C. Wang, RSC Adv., 9, 9475 (2019); https://doi.org/10.1039/C8RA10041A
S.A. Hassanzadeh-Tabrizi, J. Alloys Compd., 968, 171914 (2023); https://doi.org/10.1016/j.jallcom.2023.171914
S. Pasieczna-Patkowska, M. Cichy and J. Flieger, Molecules, 30, 684 (2025); https://doi.org/10.3390/molecules30030684
A. Surca and B. Orel, Electrochim. Acta, 44, 3051 (1999); https://doi.org/10.1016/S0013-4686(99)00019-5
P. Yasodha, M. Premila, A. Bharathi, M.C. Valsakumar, R. Rajaraman and C.S. Sundar, J. Solid State Chem., 183, 2602 (2010); https://doi.org/10.1016/j.jssc.2010.09.003
N. Kotov, M.M. Keskitalo and C.M. Johnson, Spectrochim. Acta A Mol. Biomol. Spectrosc., 330, 125640 (2025); https://doi.org/10.1016/j.saa.2024.125640
J.P. Peña, P. Bouvier, M. Hneda, C. Goujon and O. Isnard, J. Phys. Chem. Solids, 154, 110034 (2021); https://doi.org/10.1016/j.jpcs.2021.110034
J. Sánchez-Martín, P. Bouvier, G. Garbarino, S. Gallego-Parra, O. Isnard, P. Rodríguez-Hernández, A. Muñoz, D. Errandonea and J. Pellicer-Porres, J. Phys. Chem. C, 129, 10364 (2025); https://doi.org/10.1021/acs.jpcc.5c02341
S.K. Jayaraj, V. Sadishkumar, T. Arun and P. Thangadurai, Mater. Sci. Semicond. Process., 85, 122 (2018); https://doi.org/10.1016/j.mssp.2018.06.006
E. Gungor, T. Gungor, D. Caliskan and E. Ozbay, Acta Phys. Pol. A, 131, 500 (2017); https://doi.org/10.12693/APhysPolA.131.500
K. Schneider, J. Mater. Sci. Mater. Electron., 31, 10478 (2020); https://doi.org/10.1007/s10854-020-03596-0
S. Zang, X. Cai, M. Chen, D. Teng, F. Jing, Z. Leng, Y. Zhou and F. Lin, Nanomaterials, 12, 1931 (2022); https://doi.org/10.3390/nano12111931
S. Estrada-Flores, A. Martínez-Luévanos, C.M. Perez-Berumen, L.A. García-Cerda and T.E. Flores-Guia, Bol. Soc. Esp. Ceram. Vidr., 59, 209 (2020); https://doi.org/10.1016/j.bsecv.2019.10.003
Y. Zhou, Y. Wu, D. Guo, J. Li, D. Chu, S. Na, M. Yu, D. Li, G. Sui and D.F. Chai, J. Alloys Compd., 963, 171133 (2023); https://doi.org/10.1016/j.jallcom.2023.171133
S. Mondal, M.E. De Anda Reyes and U. Pal, RSC Adv., 7, 8633 (2017); https://doi.org/10.1039/C6RA28640B
P.K. Panda, R. Kamal, R. Pattanaik, D. Pradhan and S.K. Dash, Asian J. Chem., 37, 123 (2024); https://doi.org/10.14233/ajchem.2025.32904
Z. Kalaycıoğlu, B. Özuğur Uysal, Ö. Pekcan and F.B. Erim, ACS Omega, 8, 13004 (2023); https://doi.org/10.1021/acsomega.3c00198
A.A. Abd El Khalk, M.A. Betiha, A.S. Mansour, M.G. Abd El Wahed and A.M. Al-Sabagh, ACS Omega, 6, 26210 (2021); https://doi.org/10.1021/acsomega.1c03195
A.T. Bişgin, J. AOAC Int., 101, 1850 (2018); https://doi.org/10.5740/jaoacint.18-0089
A. Soni, D.C. Parameswarappa, M. Tyagi, N.K. Sahoo, A. Dogra, R.R. Pappuru and J. Chhablani, Semin. Ophthalmol., 37, 117 (2022); https://doi.org/10.1080/08820538.2021.1928717
D. Negoescu, P. Oancea, A. Răducan and M. Puiu, Rev. Roum. Chim., 66, 281 (2021); https://doi.org/10.33224/rrch.2021.66.3.08
M. Alamzeb, S. Faryad, I. Ullah, J. Hussain and W.N. Setzer, J. Fluoresc., (2025); https://doi.org/10.1007/s10895-025-04218-w
M. Pannerselvam, V. Siva, A. Murugan, A.S. Shameem, T. Bavani, S. Jhelai, S. Shanmugan, I.H.S. Ali and K. Kannan, Nanomaterials, 15, 545 (2025); https://doi.org/10.3390/nano15070545
Y. Cao, Y. Ren, J. Zhang, T. Xie and Y. Lin, Opt. Mater., 121, 111637 (2021); https://doi.org/10.1016/j.optmat.2021.111637