Copyright (c) 2025 Rajesh K

This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Supramolecular, Crystal Engineering Insight of (4-Ethyl-9-(phenylsulfonyl)-9H-carbazole-2,3-diyl)bis(phenylmethanone) Derivative
Corresponding Author(s) : K. Rajesh
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
Structural, intermolecular interaction and electronic effects of a novel (4-ethyl-9-(phenylsulfonyl)-9H-carbazole-2,3-diyl)bis(phenyl-methanone) derivatives were systematically investigated through single crystal X-ray diffraction studies, density functional theory (DFT) calculations and the Hirshfeld surface analysis techniques. The compound crystallized with the space group of P21/n in the monoclinic crystal structure. The compound crystallizes in a planar conformation, stabilized by non-covalent interactions like van der Waals forces and C–H···O hydrogen bonds. Hirshfeld surface analysis quantitatively revealed the nature and extent of these supramolecular interactions, providing insight into the crystal packing behaviour. DFT studies were employed to evaluate the molecular orbitals arrangements, energy gap and electrostatic potential of molecules, offering an understanding of the electronic structure and potential reactivity of the titled compound. The experimental and theoretical values were in good agreement, confirming the stability and planarity of the molecule. In addition, the molecular docking studies demonstrated significant binding affinity of the compound towards target proteins of Escherichia coli ThDP–dependent enzyme, indicating promising pharmacological potential. These findings contribute to the growing interest in carbazole-based compounds as multifunctional materials in both medicinal and material chemistry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, M. Mutailipu, Z. Yang, S. Pan and J. Li, Angew. Chem., 137, e202420526 (2025); https://doi.org/10.1002/ange.202420526
- M. Khalid, A. Ali, R. Jawaria, M.A. Asghar, S. Asim, M.U. Khan, R. Hussain, M. Fayyaz ur Rehman, C.J. Ennis and M.S. Akram, RSC Adv., 10, 22273 (2020); https://doi.org/10.1039/D0RA02857F
- P.K. Samanta, M.M. Alam, R. Misra and S.K. Pati, Phys. Chem. Chem. Phys., 21, 17343 (2019); https://doi.org/10.1039/C9CP03772A
- N. Vishwakarma, P.S. Patil and N. Sekar, ChemistrySelect, 9, e202404228 (2024); https://doi.org/10.1002/slct.202404228
- K.J. Nakum, K.D. Katariya, M. Hagar and R.N. Jadeja, J. Mol. Struct., 1261, 132891 (2022); https://doi.org/10.1016/j.molstruc.2022.132891
- A.J. Garza, O.I. Osman, N.A. Wazzan, S.B. Khan, A.M. Asiri and G.E. Scuseria, Theor. Chem. Acc., 133, 1458 (2014); https://doi.org/10.1007/s00214-014-1458-9
- H.J. Knölker and K.R. Reddy, Chem. Rev., 102, 4303 (2002); https://doi.org/10.1021/cr020059j
- M.V. Muppuli, K. Rajesh, D. Anitha Rexalin, K. Anandan, A. Mani, K. Gayathri, P. Devendran, V. Thayanithi, P. Kurinjinathan and M. Suresh Kumar, J. Struct. Chem., 65, 987 (2024); https://doi.org/10.1134/S0022476624050123
- K. Choroba, J. Palion-Gazda, A. Kryczka, E. Malicka and B. Machura, Dalton Trans., 54, 2209 (2025); https://doi.org/10.1039/D4DT03237C
- A.R. Al-Marhabi, R.M. El-Shishtawy, S.M. Bouzzine, M. Hamidi, H.A. Al-Ghamdi and K.O. Al-Footy, J. Photochem. Photobiol. Chem., 436, 114389 (2023); https://doi.org/10.1016/j.jphotochem.2022.114389
- Bruker, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA (2007).
- Siemens Inc., SAINT, Area-Detector Integration Software, Version 6.01, Siemens. Industrial Automation, Inc., Madison, Wisconsin, USA (1997).
- G.M. Sheldrick, SADABS: Siemens Area Detector Absorption Correction Program, Bruker Analytical X-ray Systems Inc., Madison, Wis, USA (2001).
- R.H. Blessing, Acta Crystallogr. A, 51, 33 (1995); https://doi.org/10.1107/S0108767394005726
- T. Yanai, D.P. Tew and N.C. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011
- M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 24, 669 (2003); https://doi.org/10.1002/jcc.10189
- G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930
- G.M. Sheldrick, Acta Crystallogr. C Struct. Chem., 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
- A.L. Spek, J. Appl. Cryst., 36, 7 (2003); https://doi.org/10.1107/S0021889802022112
- L.J. Farrugia, J. Appl. Cryst., 30, 565 (1997); https://doi.org/10.1107/S0021889897003117
- R. Dennington, T. Keith and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, USA (2009).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka and M.A. Spackman, Appl. Crystallogr., 54, 1006 (2021); https://doi.org/10.1107/S1600576721002910
- I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley-Blackwell: New York (1976).
- S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell and A.J. Olson, Nat. Protoc., 11, 905 (2016); https://doi.org/10.1038/nprot.2016.051
- M.S. Hasson, A. Muscate, M.J. McLeish, L.S. Polovnikova, J.A. Gerlt, G.L. Kenyon, G.A. Petsko and D. Ringe, Biochemistry, 37, 9918 (1998); https://doi.org/10.1021/bi973047e
- D.T. Cremer and J.A. Pople, J. Am. Chem. Soc., 97, 1354 (1975); https://doi.org/10.1021/ja00839a011
- M. Nardelli, Acta Crystallogr. C, 39, 1141 (1983); https://doi.org/10.1107/S0108270183007696
- A.R. Bassindale, Tetrahedron, 40, 1019 (1984); https://doi.org/10.1016/S0040-4020(01)91219-3
- M. Krishnaiah, N.J. Kumar, D.B. Reddy, M.M. Reddy, M. Soriano, Y.S. Chen and S.N. Rao, Acta Crystallogr. C, 51, 2426 (1995); https://doi.org/10.1107/S010827019500583X
- N. Ramasubbu and R. Parthasarathy, Int. J. Pept. Protein Res., 34, 153 (1989); https://doi.org/10.1111/j.1399-3011.1989.tb01505.x
- J. Bernstein, R.E. Davis, L. Shimoni and N.L. Chang, Angew. Chem. Int. Ed. Engl., 34, 1555 (1995); https://doi.org/10.1002/anie.199515551
- J.D. Roberts and M.C. Caserio, Basic Principles of Organic Chemistry W. A. Benjamin Inc., USA, edn 2 (1977).
- V. Raj, D. Madheswari and M. Mubarak Ali, J. Appl. Polym. Sci., 116, 147 (2010); https://doi.org/10.1002/app.31511
- T. Bruno and P. Svoronos, 13C NMR Absorptions of Major Functional Groups, CRC Taylor Francis, Boca Raton, FL (2012).
- S. Trabelsi, N. Kouki, M. Seydou, F. Maurel and B. Tangour, ChemistryOpen, 8, 580 (2019); https://doi.org/10.1002/open.201800224
- S. Gopalakrishnan, S. Vijayakumar and R. Shankar, Struct. Chem., 29, 1775 (2018); https://doi.org/10.1007/s11224-018-1156-7
- H. Zhang, X. Wan, X. Xue, Y. Li, A. Yu and Y. Chen, Eur. J. Org. Chem., 2010, 1681 (2010); https://doi.org/10.1002/ejoc.200901167
- K. Rajesh and P.P. Kumar, Mater. Res. Express, 4, 016502 (2017); https://doi.org/10.1088/2053-1591/aa56cc
- P. Naik, K.S. Keremane, M.R. Elmorsy, A. El‐Shafei and A.V. Adhikari, Electrochem. Sci. Adv., 2, e2100061 (2022); https://doi.org/10.1002/elsa.202100061
- K. Periyasamy, P. Sakthivel, G. Venkatesh, P. Vennila and Y. Sheena Mary, Chem. Zvesti, 78, 447 (2024); https://doi.org/10.1007/s11696-023-03101-x
- P.E. Kesavan, R.N. Behera, S. Mori and I. Gupta, J. Fluoresc., 27, 2131 (2017); https://doi.org/10.1007/s10895-017-2152-9
- H.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977); https://doi.org/10.1007/BF00549096
- U.M. Sumaya, E. Sankar, K.A. MohanaKrishnan, K. Biruntha and G. Usha, Acta Crystallogr. E Crystallogr. Commun., 74, 878 (2018); https://doi.org/10.1107/S2056989018007971
- R. Eswaramoorthy, H. Hailekiros, F. Kedir and M. Endale, Adv. Appl. Bioinform. Chem., 14, 13 (2021); https://doi.org/10.2147/AABC.S290912
- İ. Çapan, M. Hawash, N. Jaradat, Y. Sert, R. Servi and İ. Koca, BMC Chem., 17, 60 (2023); https://doi.org/10.1186/s13065-023-00961-y
- S. Bhattacharya, C. Biswas, S.S.K. Raavi, J. Venkata Suman Krishna, N. Vamsi Krishna, L. Giribabu and V.R. Soma, J. Phys. Chem. C, 123, 11118 (2019); https://doi.org/10.1021/acs.jpcc.9b01531
References
H. Wang, M. Mutailipu, Z. Yang, S. Pan and J. Li, Angew. Chem., 137, e202420526 (2025); https://doi.org/10.1002/ange.202420526
M. Khalid, A. Ali, R. Jawaria, M.A. Asghar, S. Asim, M.U. Khan, R. Hussain, M. Fayyaz ur Rehman, C.J. Ennis and M.S. Akram, RSC Adv., 10, 22273 (2020); https://doi.org/10.1039/D0RA02857F
P.K. Samanta, M.M. Alam, R. Misra and S.K. Pati, Phys. Chem. Chem. Phys., 21, 17343 (2019); https://doi.org/10.1039/C9CP03772A
N. Vishwakarma, P.S. Patil and N. Sekar, ChemistrySelect, 9, e202404228 (2024); https://doi.org/10.1002/slct.202404228
K.J. Nakum, K.D. Katariya, M. Hagar and R.N. Jadeja, J. Mol. Struct., 1261, 132891 (2022); https://doi.org/10.1016/j.molstruc.2022.132891
A.J. Garza, O.I. Osman, N.A. Wazzan, S.B. Khan, A.M. Asiri and G.E. Scuseria, Theor. Chem. Acc., 133, 1458 (2014); https://doi.org/10.1007/s00214-014-1458-9
H.J. Knölker and K.R. Reddy, Chem. Rev., 102, 4303 (2002); https://doi.org/10.1021/cr020059j
M.V. Muppuli, K. Rajesh, D. Anitha Rexalin, K. Anandan, A. Mani, K. Gayathri, P. Devendran, V. Thayanithi, P. Kurinjinathan and M. Suresh Kumar, J. Struct. Chem., 65, 987 (2024); https://doi.org/10.1134/S0022476624050123
K. Choroba, J. Palion-Gazda, A. Kryczka, E. Malicka and B. Machura, Dalton Trans., 54, 2209 (2025); https://doi.org/10.1039/D4DT03237C
A.R. Al-Marhabi, R.M. El-Shishtawy, S.M. Bouzzine, M. Hamidi, H.A. Al-Ghamdi and K.O. Al-Footy, J. Photochem. Photobiol. Chem., 436, 114389 (2023); https://doi.org/10.1016/j.jphotochem.2022.114389
Bruker, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA (2007).
Siemens Inc., SAINT, Area-Detector Integration Software, Version 6.01, Siemens. Industrial Automation, Inc., Madison, Wisconsin, USA (1997).
G.M. Sheldrick, SADABS: Siemens Area Detector Absorption Correction Program, Bruker Analytical X-ray Systems Inc., Madison, Wis, USA (2001).
R.H. Blessing, Acta Crystallogr. A, 51, 33 (1995); https://doi.org/10.1107/S0108767394005726
T. Yanai, D.P. Tew and N.C. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011
M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 24, 669 (2003); https://doi.org/10.1002/jcc.10189
G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930
G.M. Sheldrick, Acta Crystallogr. C Struct. Chem., 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
A.L. Spek, J. Appl. Cryst., 36, 7 (2003); https://doi.org/10.1107/S0021889802022112
L.J. Farrugia, J. Appl. Cryst., 30, 565 (1997); https://doi.org/10.1107/S0021889897003117
R. Dennington, T. Keith and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, USA (2009).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka and M.A. Spackman, Appl. Crystallogr., 54, 1006 (2021); https://doi.org/10.1107/S1600576721002910
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley-Blackwell: New York (1976).
S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell and A.J. Olson, Nat. Protoc., 11, 905 (2016); https://doi.org/10.1038/nprot.2016.051
M.S. Hasson, A. Muscate, M.J. McLeish, L.S. Polovnikova, J.A. Gerlt, G.L. Kenyon, G.A. Petsko and D. Ringe, Biochemistry, 37, 9918 (1998); https://doi.org/10.1021/bi973047e
D.T. Cremer and J.A. Pople, J. Am. Chem. Soc., 97, 1354 (1975); https://doi.org/10.1021/ja00839a011
M. Nardelli, Acta Crystallogr. C, 39, 1141 (1983); https://doi.org/10.1107/S0108270183007696
A.R. Bassindale, Tetrahedron, 40, 1019 (1984); https://doi.org/10.1016/S0040-4020(01)91219-3
M. Krishnaiah, N.J. Kumar, D.B. Reddy, M.M. Reddy, M. Soriano, Y.S. Chen and S.N. Rao, Acta Crystallogr. C, 51, 2426 (1995); https://doi.org/10.1107/S010827019500583X
N. Ramasubbu and R. Parthasarathy, Int. J. Pept. Protein Res., 34, 153 (1989); https://doi.org/10.1111/j.1399-3011.1989.tb01505.x
J. Bernstein, R.E. Davis, L. Shimoni and N.L. Chang, Angew. Chem. Int. Ed. Engl., 34, 1555 (1995); https://doi.org/10.1002/anie.199515551
J.D. Roberts and M.C. Caserio, Basic Principles of Organic Chemistry W. A. Benjamin Inc., USA, edn 2 (1977).
V. Raj, D. Madheswari and M. Mubarak Ali, J. Appl. Polym. Sci., 116, 147 (2010); https://doi.org/10.1002/app.31511
T. Bruno and P. Svoronos, 13C NMR Absorptions of Major Functional Groups, CRC Taylor Francis, Boca Raton, FL (2012).
S. Trabelsi, N. Kouki, M. Seydou, F. Maurel and B. Tangour, ChemistryOpen, 8, 580 (2019); https://doi.org/10.1002/open.201800224
S. Gopalakrishnan, S. Vijayakumar and R. Shankar, Struct. Chem., 29, 1775 (2018); https://doi.org/10.1007/s11224-018-1156-7
H. Zhang, X. Wan, X. Xue, Y. Li, A. Yu and Y. Chen, Eur. J. Org. Chem., 2010, 1681 (2010); https://doi.org/10.1002/ejoc.200901167
K. Rajesh and P.P. Kumar, Mater. Res. Express, 4, 016502 (2017); https://doi.org/10.1088/2053-1591/aa56cc
P. Naik, K.S. Keremane, M.R. Elmorsy, A. El‐Shafei and A.V. Adhikari, Electrochem. Sci. Adv., 2, e2100061 (2022); https://doi.org/10.1002/elsa.202100061
K. Periyasamy, P. Sakthivel, G. Venkatesh, P. Vennila and Y. Sheena Mary, Chem. Zvesti, 78, 447 (2024); https://doi.org/10.1007/s11696-023-03101-x
P.E. Kesavan, R.N. Behera, S. Mori and I. Gupta, J. Fluoresc., 27, 2131 (2017); https://doi.org/10.1007/s10895-017-2152-9
H.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977); https://doi.org/10.1007/BF00549096
U.M. Sumaya, E. Sankar, K.A. MohanaKrishnan, K. Biruntha and G. Usha, Acta Crystallogr. E Crystallogr. Commun., 74, 878 (2018); https://doi.org/10.1107/S2056989018007971
R. Eswaramoorthy, H. Hailekiros, F. Kedir and M. Endale, Adv. Appl. Bioinform. Chem., 14, 13 (2021); https://doi.org/10.2147/AABC.S290912
İ. Çapan, M. Hawash, N. Jaradat, Y. Sert, R. Servi and İ. Koca, BMC Chem., 17, 60 (2023); https://doi.org/10.1186/s13065-023-00961-y
S. Bhattacharya, C. Biswas, S.S.K. Raavi, J. Venkata Suman Krishna, N. Vamsi Krishna, L. Giribabu and V.R. Soma, J. Phys. Chem. C, 123, 11118 (2019); https://doi.org/10.1021/acs.jpcc.9b01531