Copyright (c) 2026 Aditi Gupta, Ekta Kundra Arora, Kavya Bhakuni, Ann Riya Selvi, Vibha Sharma

This work is licensed under a Creative Commons Attribution 4.0 International License.
Role of Schiff Bases and their Complexes in Optoelectronic Devices: A Review
Corresponding Author(s) : Vibha Sharma
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
Schiff bases, also known as imines, have gained considerable popularity for use in optoelectronic devices. Their ability to coordinate with different metal ions, unique electronic and charge transport properties and tunability via minor structural modifications make them suitable for these devices. The ease of modifying the optical energy band gap for desired absorption and emission characteristics, reduced toxicity, enhanced energy efficiency and material flexibility are attractive features promoting their use in optoelectronics. The present study compares important electrochemical, thermal and photophysical properties like optical band gaps, HOMO-LUMO energies, thermal stabilities and absorption/emission wavelengths of Schiff bases and their metal complexes. High fluorescence quantum and efficient charge transport are crucial for efficient light emission and enhanced performance of various optoelectronic devices. Schiff bases, their metal complexes and hybrid systems composed of Schiff base complexes with metal/semiconductor materials, which have been recently studied for use in organic light-emitting diode (OLED) and organic solar cells (OSC), have been reviewed in this article.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M.H. Khalil, A.M. Ishmael and I.M. El-Sewify, 2D non-layered metal dichalcogenides, 2023, p. 63–100; https://doi.org/10.1016/bs.semsem.2023.09.010
- F. Adams and C. Barbante, Compr. Anal. Chem., 69, 125 (2015); https://doi.org/10.1016/B978-0-444-63439-9.00004-9
- M.A. Mimona, M.I.H. Rimon, F.T. Zohura, J.M. Sony, S.I. Rim, M.M.R. Arup and M.H. Mobarak, Chemical Eng. J. Adv., 21, 100704 (2025); https://doi.org/10.1016/j.ceja.2025.100704.
- F. Gao and E. Reichmanis, Chem. Rev., 123, 10835 (2023); https://doi.org/10.1021/acs.chemrev.3c00349
- J. Wang, J. Song, X. Mu and M. Sun, Mater. Today Phys., 13, 100196 (2020); https://doi.org/10.1016/j.mtphys.2020.100196.
- D.K. Sharma, S. Shukla, K.K. Sharma and V. Kumar, Mater. Today Proc., 49, 3028 (2022); https://doi.org/10.1016/j.matpr.2020.10.238
- G. Brunetti and M.A. Butt, Micromachines, 15, 1481 (2024); https://doi.org/10.3390/mi15121481.
- W. Zhao, Z. He, J.W.Y. Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao and B.Z. Tang, Chem, 1, 592 (2016); https://doi.org/10.1016/j.chempr.2016.08.010
- Y. Bian, X. Yan, F. Chen, Q. Li, B. Li, W. Hou, Z. Lu, S. Wang, H. Zhang, W. Zhang, D. Zhang, A. Tang, F. Fan and H. Shen, Nature, 635, 854 (2024); https://doi.org/10.1038/s41586-024-08197-z
- A. Tanaka, Toxicol. Appl. Pharmacol., 198, 405 (2004); https://doi.org/10.1016/j.taap.2003.10.019
- R.C. Sharma, R. Nandal, N. Tanwar, R. Yadav, J. Bhardwaj and A. Verma, J. Phys. Conf. Ser., 2426, 012008 (2023); https://doi.org/10.1088/1742-6596/2426/1/012008
- A. Tanaka, N. Maples-Reynolds and B.A. Fowler, Chapter 12 - Gallium and gallium semiconductor compounds. In: Nordberg GF, Costa M, editors. Handbook on the Toxicology of Metals (Fifth Edition), Academic Press; 2022, p. 275–88; https://doi.org/10.1016/B978-0-12-822946-0.00011-8
- Z. Hu, H. Zhang, Y. Chen, Q. Wang, M.R.J. Elsegood, S.J. Teat, X. Feng, M.M. Islam, F. Wu and B.Z. Tang, Dyes Pigments, 175, 108175 (2020); https://doi.org/10.1016/j.dyepig.2019.108175
- J. Peng, L. Hou, D. Liu, Z. Zhao, J. Zhang, Z. Qiu and B.Z. Tang, ACS Applied Optical Materials, 2, 15 (2024); https://doi.org/10.1021/acsaom.3c00370
- M. Sawatzki-Park, S.-J. Wang, H. Kleemann and K. Leo, Chem. Rev., 123, 8232 (2023); https://doi.org/10.1021/acs.chemrev.2c00844
- M. Rodríguez, A. Espinosa-Roa and C. Garcias-Morales, 4 - New strategies for the synthesis of small organic molecules based on thieno [3,4-c] pyrrole-4,6-dione used in optoelectronic devices. In: Marrocchi A, editor. Sustainable Strategies in Organic Electronics, Woodhead Publishing; 2022, p. 145–77; https://doi.org/10.1016/B978-0-12-823147-0.00004-5
- Y. Wu, J.-C. Liu, J. Cao, R.-Z. Li and N.-Z. Jin, Res. Chem. Intermed., 41, 6833 (2015); https://doi.org/10.1007/s11164-014-1781-8
- E.A. Smirnova, M.A. Besedina, M.P. Karushev, V.V. Vasil’ev and A.M. Timonov, Russ. J. Phys. Chem. A. Focus Chem., 90, 1088 (2016); https://doi.org/10.1134/S0036024416050319
- R.J. Fessenden, J.S. Fessenden and M.W. Logue, Organic Chemistry. 6th ed. United Kingdom: Brooks/Cole Publishing Company; 1998.
- K. Muzammil, P. Trivedi and D.B. Khetani, Res. J. Chem. Sci., 5, 52 (2015).
- W. Wu, J. Sun, S. Ji, W. Wu, J. Zhao and H. Guo, Dalton Trans., 40, 11550 (2011); https://doi.org/10.1039/c1dt11001b
- A.M. Abu-Dief and I.M.A. Mohamed, Beni. Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004
- L.P. Wang, S.B. Jiao, W.F. Zhang, Y.Q. Liu and G. Yu, Chin. Sci. Bull., 58, 2733 (2013); https://doi.org/10.1007/s11434-013-5786-2
- F. Nourifard and M. Payehghadr, Int. J. Environ. Anal. Chem., 96, 552 (2016); https://doi.org/10.1080/03067319.2016.1172219
- L.P. Singh and J.M. Bhatnagar, Talanta, 64, 313 (2004); https://doi.org/10.1016/j.talanta.2004.02.020
- V.K. Gupta, A.K. Singh and B. Gupta, Anal. Chim. Acta, 575, 198 (2006); https://doi.org/10.1016/j.aca.2006.05.090
- I.V. Krylova, L.D. Labutskaya, M.O. Markova, V.A. Balycheva, P.G. Shangin, A.Y. Akyeva, V.V. Golovina, M.E. Minyaev, A.V. Lalov, V.M. Pechennikov, V.T. Novikov, M.P. Egorov and M.A. Syroeshkin, New J. Chem., 47, 11890 (2023); https://doi.org/10.1039/D3NJ01993D
- M.C. Garcia-Lopez, B.M. Munoz-Flores, V.M. Jimenez-Perez, I. Moggio, E. Arias, R. Chan-Navarro and R. Santillan, Dyes Pigments, 106, 188 (2014); https://doi.org/10.1016/j.dyepig.2014.02.021
- K. Subramaniam, A.B. Athanas and S. Kalaiyar, Inorg. Chem. Commun., 104, 88 (2019); https://doi.org/10.1016/j.inoche.2019.03.043
- C. Gautam, D. Srivastava, G. Kociok-Kohn, S.W. Gosavi, V.K. Sharma, R. Chauhan, D.J. Late, A. Kumar and M. Muddassir, RSC Advances, 13, 9046 (2023); https://doi.org/10.1039/D3RA00344B
- P.K.M. Lokhande, K.K. Sonigara, M.M. Jadhav, D.S. Patil, S.S. Soni and N. Sekar, ChemistrySelect, 4, 4044 (2019); https://doi.org/10.1002/slct.201803940
- T. Akitsu, B. Miroslaw and S. Sudarsan, Int. J. Mol. Sci., 23, 10005 (2022); https://doi.org/10.3390/ijms231710005
- N.R. Moheimani and D. Parlevliet, Renew. Sustain. Energy Rev., 27, 494 (2013); https://doi.org/10.1016/j.rser.2013.07.006
- A. Tsaturyan, Y. Machida, T. Akitsu, I. Gozhikova and I. Shcherbakov, J. Mol. Struct., 1162, 54 (2018); https://doi.org/10.1016/j.molstruc.2018.02.082
- S. Kagatikar and D. Sunil, J. Electron. Mater., 50, 6708 (2021); https://doi.org/10.1007/s11664-021-09197-9
- A.N. Gusev, M.A. Kiskin, E.V. Braga, M.A. Kryukova, G.V. Baryshnikov, N.N. Karaush-Karmazin, V.A. Minaeva, B.F. Minaev, K. Ivaniuk, P. Stakhira, H. Ågren and W. Linert, ACS Appl. Electron. Mater., 3, 3436 (2021); https://doi.org/10.1021/acsaelm.1c00402
- L. Yan, R. Li, W. Shen and Z. Qi, J. Lumin., 194, 151 (2018); https://doi.org/10.1016/j.jlumin.2017.10.032
- A.N. Gusev, M.A. Kiskin, E.V. Braga, M. Chapran, G. Wiosna-Salyga, G.V. Baryshnikov, V.A. Minaeva, B.F. Minaev, K. Ivaniuk, P. Stakhira, H. Ågren and W. Linert, J. Phys. Chem. C, 123, 11850 (2019); https://doi.org/10.1021/acs.jpcc.9b02171
- A.S. Burlov, Y.V. Koshchienko, V.G. Vlasenko, O.P. Demidov, B.V. Chaltsev, M.A. Kiskin, D.A. Garnovskii, A.A. Kolodina, A.N. Gusev, E.V. Braga, I.A. Nauhatsky and W. Linert, Appl. Organomet. Chem., 38, e7375 (2024); https://doi.org/10.1002/aoc.7375
- J. Zhang, X. Zhu, A. Zhong, W. Jia, F. Wu, D. Li, H. Tong, C. Wu, W. Tang, P. Zhang, L. Wang and D. Han, Org. Electron., 42, 153 (2017); https://doi.org/10.1016/j.orgel.2016.12.024
- C. Che, C. Kwok, S. Lai, A.F. Rausch, W.J. Finkenzeller, N. Zhu and H. Yersin, Chemistry, 16, 233 (2010); https://doi.org/10.1002/chem.200902183
- P.G. Cozzi, L.S. Dolci, A. Garelli, M. Montalti, L. Prodi and N. Zaccheroni, New J. Chem., 27, 692 (2003); https://doi.org/10.1039/b209396k
- R. Chouk, C. Aguir, M. Bergaoui, J.-P. Djukic and M. Khalfaoui, A computational study to the optoelectronic properties of Al Schiff base complex for Efficient OLED. 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE; 2020, p. 612–5; https://doi.org/10.1109/SSD49366.2020.9364220
- Organic Light Emitting Diodes, OLED’s - Principles, Advantages, Materials and Potential Applications n.d. https://www.azom.com/article.aspx?ArticleID=2735 (accessed April 29, 2025).
- C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987); https://doi.org/10.1063/1.98799
- V. Nishal, D. Singh, R.K. Saini, V. Tanwar, S. Kadyan, R. Srivastava and P.S. Kadyan, Cogent Chem., 1, 1079291 (2015); https://doi.org/10.1080/23312009.2015.1079291
- J. Costamagna, J. Vargas, R. Latorre, A. Alvarado and G. Mena, Coord. Chem. Rev., 119, 67 (1992); https://doi.org/10.1016/0010-8545(92)80030-U
- N.E. Eltayeb, S.G. Teoh, R. Adnan, J.B.-J. Teh and H.-K. Fun, J. Fluoresc., 21, 1393 (2011); https://doi.org/10.1007/s10895-010-0822-y
- V. Liuzzo, W. Oberhauser and A. Pucci, Inorg. Chem. Commun., 13, 686 (2010); https://doi.org/10.1016/j.inoche.2010.03.020
- P.H.A. Nayak, H.S.B. Naik, R. Viswanath and B.R. Kirthan, J. Phys. Chem. Solids, 159, 110288 (2021); https://doi.org/10.1016/j.jpcs.2021.110288
- A.I. Kornikov, R.E. Mustakimov, A.S. Goloveshkin, L.O. Tcelykh, A.A. Vashchenko, A.V. Medvedko, L.S. Lepnev and V.V. Utochnikova, Org. Electron., 105, 106492 (2022); https://doi.org/10.1016/j.orgel.2022.106492
- M. Barwiolek, D. Jankowska, A. Kaczmarek-Kędziera, S. Wojtulewski, L. Skowroński, T. Rerek, P. Popielarski and T.M. Muziol, Molecules, 27, 7396 (2022); https://doi.org/10.3390/molecules27217396
- C.U. Vite-Morales, M.Á. Amado-Briseño, R.A. Vázquez-García, J.E. Muñoz-Pérez, M.A. Veloz-Rodríguez, E. Rueda-Soriano, A. Espinosa-Roa and O.J. Hernández-Ortiz, Chemical Physics Impact, 9, 100740 (2024); https://doi.org/10.1016/j.chphi.2024.100740
- L. Sun, Y. Chen, M. Sun and Y. Zheng, Chem. Asian J., 18, e202300006 (2023); https://doi.org/10.1002/asia.202300006
- Organic Solar Cells: An Introduction to Organic Photovoltaics | Ossila n.d. https://www.ossila.com/pages/organic-photovoltaics-introduction (accessed April 29, 2025).
- Z. Gao, L. Guo, Y. Sun, W. Qu, T. Yang, B. Li, J. Li and L. Duan, Org. Electron., 67, 232 (2019); https://doi.org/10.1016/j.orgel.2019.01.023
- How Indium Tin Oxide (ITO) Helps Solar Cells Work Better, n.d. https://www.sputtertargets.net/blog/how-indium-tin-oxide-ito-helps-solar-cells-work-better.html (accessed April 29, 2025).
- M.L. Petrus, R.K.M. Bouwer, U. Lafont, S. Athanasopoulos, N.C. Greenham and T.J. Dingemans, J. Mater. Chem. A Mater. Energy Sustain., 2, 9474 (2014); https://doi.org/10.1039/C4TA01629G
- C.Y. Goreci, J. Chem. Res., 44, 625 (2020); https://doi.org/10.1177/1747519820912671
- R. Chouk, C. Aguir, D. Haouanoh, M. Bergaoui, R. Tala-Ighil, E. Stathatos and M. Khalfaoui, J. Mol. Struct., 1196, 676 (2019); https://doi.org/10.1016/j.molstruc.2019.07.026
- D. Kilinc, O. Sahin and S. Horoz, Dig. J. Nanomater. Biostruct., 14, 375 (2019).
- C.O. Sanchez, J.C. Bernede, L. Cattin, M. Makha and N. Gatica, Thin Solid Films, 562, 495 (2014); https://doi.org/10.1016/j.tsf.2014.04.071
- M.L. Petrus, T. Bein, T.J. Dingemans and P. Docampo, J. Mater. Chem. A Mater. Energy Sustain., 3, 12159 (2015); https://doi.org/10.1039/C5TA03046C
- M. Abdel-Shakour, W.A. El-Said, I.M. Abdellah, R. Su and A. El-Shafei, J. Mater. Sci. Mater. Electron., 30, 5081 (2019); https://doi.org/10.1007/s10854-019-00806-2
- D. Sek, M. Siwy, K. Bijak, M. Filapek, G. Malecki, E.M. Nowak, J. Sanetra, A. Jarczyk-Jedryka, K. Laba, M. Lapkowski and E. Schab-Balcerzak, J. Electroanal. Chem. (Lausanne), 751, 128 (2015); https://doi.org/10.1016/j.jelechem.2015.05.040
- A.M. Cantón-Díaz, B.M. Muñoz-Flores, I. Moggio, E. Arias, A. De León, M.C. García-López, R. Santillán, M.E. Ochoa and V.M. Jiménez-Pérez, New J. Chem., 42, 14586 (2018); https://doi.org/10.1039/C8NJ02998A
- İ. Sıdır, Y.G. Sıdır, H. Berber and F. Demiray, J. Mol. Struct., 1176, 31 (2019); https://doi.org/10.1016/j.molstruc.2018.08.067
- Y. Wang, W. Ye, X. Yang, E. Rezaee, H. Shan, S. Yang, S. Cai, J.-H. Pan, J. Xu and Z.-X. Xu, Synth. Met., 259, 116248 (2020); https://doi.org/10.1016/j.synthmet.2019.116248
- A. Irfan, A.G. Al-Sehemi, M.A. Assiri and S. Ullah, Mater. Sci. Semicond. Process., 107, 104855 (2020); https://doi.org/10.1016/j.mssp.2019.104855
- N. Nanjundan, R. Narayanasamy, S. Geib, K. Velmurugan, R. Nandhakumar, M.D. Balakumaran and P.T. Kalaichelvan, Polyhedron, 110, 203 (2016); https://doi.org/10.1016/j.poly.2016.02.049
- S. Revoju, A. Matuhina, L. Canil, H. Salonen, A. Hiltunen, A. Abate and P. Vivo, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 15486 (2020); https://doi.org/10.1039/D0TC03421E
- Z.S. Huang, H. Meier and D. Cao, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 2404 (2016); https://doi.org/10.1039/C5TC04418A
- Z. Sembiring, T. Julianti, D.S. Luthfi, A.T. Agustin, S. Bahri, W. Simanjuntak, R. Rinawati and S. Hadi, Asian J. Chem., 35, 316 (2023); https://doi.org/10.14233/ajchem.2023.24039
- K. Takahashi, S. Tanaka, M. Yamaguchi, Y. Tunoda, T. Akitsu, M. Sugiyama et al., J. Korean Chem. Soc., 61, 129 (2017); https://doi.org/10.5012/jkcs.2017.61.3.129
- A.G. Imer, R.H.B. Syan, M. Gulcan, Y.S. Ocak and A. Tombak, J. Mater. Sci. Mater. Electron., 29, 898 (2018); https://doi.org/10.1007/s10854-017-7986-z
- M. Lkadida, B. Es-Sounni, F. Nekkach, A. Boutahar, M. Bakhouch, H. Lemziouka, M.E. Yazidi and M. Lamiae, J. Mol. Struct., 1349, 143746 (2026); https://doi.org/10.1016/j.molstruc.2025.143746
- S. Asiri, M.A. Kassem, M.A. Eltaher and K.M. Saad, Int. J. Electrochem. Sci., 15, 6508 (2020); https://doi.org/10.20964/2020.07.72
- M. Nasr-Esfahani, M. Zendehdel, N.Y. Nia, B. Jafari and M.K. Babadi, RSC Advances, 4, 15961 (2014); https://doi.org/10.1039/C3RA46531D
- S. Thokala and S.P. Singh, ACS Omega, 5, 5608 (2020); https://doi.org/10.1021/acsomega.0c00065
- I.J. Al-Busaidi, A. Haque, N.K. Al Rasbi and M.S. Khan, Synth. Met., 257, 116189 (2019); https://doi.org/10.1016/j.synthmet.2019.116189
- J. Huang, X. Wang, Y. Xiang, L. Guo and G.B. Chen, Adv. Energy Sustain. Res., 2, 2100016 (2021); https://doi.org/10.1002/aesr.202100016
- F.S. Alamro, S.M. Gomha, M. Shaban, A.S. Altowyan, T.Z. Abolibda and H.A. Ahmed, Sci. Rep., 11, 15046 (2021); https://doi.org/10.1038/s41598-021-94533-6
- A. Irfan, A.G. Al-Sehemi and A. Kalam, Materials, 15, 8590 (2022); https://doi.org/10.3390/ma15238590
- M. Lakshmipathi, S. Tothadi, F. Emmerling, B. Bhattacharya and S. Ghosh, J. Mol. Struct., 1252, 132182 (2022); https://doi.org/10.1016/j.molstruc.2021.132182
- K. Upendranath, T. Venkatesh, Y. Arthoba Nayaka, M. Shashank and G. Nagaraju, Inorg. Chem. Commun., 139, 109354 (2022); https://doi.org/10.1016/j.inoche.2022.109354
- A. Tahmasbi, A. Jafari and A. Nikoo, Sci. Rep., 13, 10988 (2023); https://doi.org/10.1038/s41598-023-38086-w
- M.E. Sánchez Vergara, E. Gómez, E. Toledo Dircio, J.R. Álvarez Bada, S. Cuenca Pérez, J.M. Galván Hidalgo, A. González Hernández and S. Hernández Ortega, Int. J. Mol. Sci., 24, 5255 (2023); https://doi.org/10.3390/ijms24065255
- A.F. Akbulatov, A.Y. Akyeva, P.G. Shangin, N.A. Emelianov, I.V. Krylova, M.O. Markova, L.D. Labutskaya, A.V. Mumyatov, E.I. Tuzharov, D.A. Bunin, L.A. Frolova, M.P. Egorov, M.A. Syroeshkin and P.A. Troshin, Membranes, 13, 439 (2023); https://doi.org/10.3390/membranes13040439
- K. Chen, X. Xiao, J. Liu, J. Qi, Q. Gao, Y. Ma, Y. Cheng, A. Mei and H. Han, Adv. Mater., 36, 2401319 (2024); https://doi.org/10.1002/adma.202401319
- A.O. Tezcan, P. Oruç, N. Tuğluoğlu and S. Eymur, Opt. Quantum Electron., 56, 989 (2024); https://doi.org/10.1007/s11082-024-06770-4
- S. Kim, H.J. Bae, S. Park, W. Kim, J. Kim, J.S. Kim, Y. Jung, S. Sul, S.-G. Ihn, C. Noh, S. Kim and Y. You, Nat. Commun., 9, 1211 (2018); https://doi.org/10.1038/s41467-018-03602-4
- C. Murawski, K. Leo and M.C. Gather, Adv. Mater., 25, 6801 (2013); https://doi.org/10.1002/adma.201301603
- J.V. Caspar, B.P. Sullivan, E.M. Kober and T.J. Meyer, Chem. Phys. Lett., 91, 91 (1982); https://doi.org/10.1016/0009-2614(82)80114-0
- C.H. Fan, P. Sun, T.H. Su and C.H. Cheng, Adv. Mater., 23, 2981 (2011); https://doi.org/10.1002/adma.201100610
- L.S. Liao, J. He, X. Zhou, M. Lu, Z.H. Xiong, Z.B. Deng, X.Y. Hou and S.T. Lee, J. Appl. Phys., 88, 2386 (2000); https://doi.org/10.1063/1.1286009
- V.V. Jarikov and D.Y. Kondakov, J. Appl. Phys., 105, 034905 (2009); https://doi.org/10.1063/1.3072622
- M. Yahiro, D. Zou and T. Tsutsui, Synth. Met., 111-112, 245 (2000); https://doi.org/10.1016/S0379-6779(99)00373-2
- H. Aziz, Z.D. Popovic and N.X. Hu, Appl. Phys. Lett., 81, 370 (2002); https://doi.org/10.1063/1.1491002
- F. So and D. Kondakov, Adv. Mater., 22, 3762 (2010); https://doi.org/10.1002/adma.200902624
- C.C. Vidyasagar, B.M. Muñoz Flores, V.M. Jiménez-Pérez and P.M. Gurubasavaraj, Mater. Today Chem., 11, 133 (2019); https://doi.org/10.1016/j.mtchem.2018.09.010
- H. Aziz and Z.D. Popovic, Chem. Mater., 16, 4522 (2004); https://doi.org/10.1021/cm040081o
- X. Yang, L. Lan, X. Pan, X. Liu, Y. Song, X. Yang, Q. Dong, L. Li, P. Naumov and H. Zhang, Nat. Commun., 13, 7874 (2022); https://doi.org/10.1038/s41467-022-35432-w
- X.H. Ding, L.Z. Wang, Y.Z. Chang, C.X. Wei, J.Y. Lin, M.H. Ding and W. Huang, Aggregate, 5, e500 (2024); https://doi.org/10.1002/agt2.500
- S. Carrara, What is bioelectronics? Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems 2015:1–4; https://doi.org/10.1017/CBO9781139629539.001
- M.A. El-ghamry, K.M. Nassir, F.M. Elzawawi, A.A.A. Aziz and S.M. Abu-El-Wafa, J. Mol. Struct., 1235, 130235 (2021); https://doi.org/10.1016/j.molstruc.2021.130235
- K. Mohanan, N. Subhadrambika, R. Selwin Joseyphus, S.S. Swathy and V.P. Nisha, J. Saudi Chem. Soc., 20, 379 (2016); https://doi.org/10.1016/j.jscs.2012.07.007
- Mousa E, Tammam AK, Refaat AM, Mohamed GG., Scientific Reports, 15, 31202 (2025); https://doi.org/10.1038/s41598-025-16628-8
References
M.M.H. Khalil, A.M. Ishmael and I.M. El-Sewify, 2D non-layered metal dichalcogenides, 2023, p. 63–100; https://doi.org/10.1016/bs.semsem.2023.09.010
F. Adams and C. Barbante, Compr. Anal. Chem., 69, 125 (2015); https://doi.org/10.1016/B978-0-444-63439-9.00004-9
M.A. Mimona, M.I.H. Rimon, F.T. Zohura, J.M. Sony, S.I. Rim, M.M.R. Arup and M.H. Mobarak, Chemical Eng. J. Adv., 21, 100704 (2025); https://doi.org/10.1016/j.ceja.2025.100704.
F. Gao and E. Reichmanis, Chem. Rev., 123, 10835 (2023); https://doi.org/10.1021/acs.chemrev.3c00349
J. Wang, J. Song, X. Mu and M. Sun, Mater. Today Phys., 13, 100196 (2020); https://doi.org/10.1016/j.mtphys.2020.100196.
D.K. Sharma, S. Shukla, K.K. Sharma and V. Kumar, Mater. Today Proc., 49, 3028 (2022); https://doi.org/10.1016/j.matpr.2020.10.238
G. Brunetti and M.A. Butt, Micromachines, 15, 1481 (2024); https://doi.org/10.3390/mi15121481.
W. Zhao, Z. He, J.W.Y. Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao and B.Z. Tang, Chem, 1, 592 (2016); https://doi.org/10.1016/j.chempr.2016.08.010
Y. Bian, X. Yan, F. Chen, Q. Li, B. Li, W. Hou, Z. Lu, S. Wang, H. Zhang, W. Zhang, D. Zhang, A. Tang, F. Fan and H. Shen, Nature, 635, 854 (2024); https://doi.org/10.1038/s41586-024-08197-z
A. Tanaka, Toxicol. Appl. Pharmacol., 198, 405 (2004); https://doi.org/10.1016/j.taap.2003.10.019
R.C. Sharma, R. Nandal, N. Tanwar, R. Yadav, J. Bhardwaj and A. Verma, J. Phys. Conf. Ser., 2426, 012008 (2023); https://doi.org/10.1088/1742-6596/2426/1/012008
A. Tanaka, N. Maples-Reynolds and B.A. Fowler, Chapter 12 - Gallium and gallium semiconductor compounds. In: Nordberg GF, Costa M, editors. Handbook on the Toxicology of Metals (Fifth Edition), Academic Press; 2022, p. 275–88; https://doi.org/10.1016/B978-0-12-822946-0.00011-8
Z. Hu, H. Zhang, Y. Chen, Q. Wang, M.R.J. Elsegood, S.J. Teat, X. Feng, M.M. Islam, F. Wu and B.Z. Tang, Dyes Pigments, 175, 108175 (2020); https://doi.org/10.1016/j.dyepig.2019.108175
J. Peng, L. Hou, D. Liu, Z. Zhao, J. Zhang, Z. Qiu and B.Z. Tang, ACS Applied Optical Materials, 2, 15 (2024); https://doi.org/10.1021/acsaom.3c00370
M. Sawatzki-Park, S.-J. Wang, H. Kleemann and K. Leo, Chem. Rev., 123, 8232 (2023); https://doi.org/10.1021/acs.chemrev.2c00844
M. Rodríguez, A. Espinosa-Roa and C. Garcias-Morales, 4 - New strategies for the synthesis of small organic molecules based on thieno [3,4-c] pyrrole-4,6-dione used in optoelectronic devices. In: Marrocchi A, editor. Sustainable Strategies in Organic Electronics, Woodhead Publishing; 2022, p. 145–77; https://doi.org/10.1016/B978-0-12-823147-0.00004-5
Y. Wu, J.-C. Liu, J. Cao, R.-Z. Li and N.-Z. Jin, Res. Chem. Intermed., 41, 6833 (2015); https://doi.org/10.1007/s11164-014-1781-8
E.A. Smirnova, M.A. Besedina, M.P. Karushev, V.V. Vasil’ev and A.M. Timonov, Russ. J. Phys. Chem. A. Focus Chem., 90, 1088 (2016); https://doi.org/10.1134/S0036024416050319
R.J. Fessenden, J.S. Fessenden and M.W. Logue, Organic Chemistry. 6th ed. United Kingdom: Brooks/Cole Publishing Company; 1998.
K. Muzammil, P. Trivedi and D.B. Khetani, Res. J. Chem. Sci., 5, 52 (2015).
W. Wu, J. Sun, S. Ji, W. Wu, J. Zhao and H. Guo, Dalton Trans., 40, 11550 (2011); https://doi.org/10.1039/c1dt11001b
A.M. Abu-Dief and I.M.A. Mohamed, Beni. Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004
L.P. Wang, S.B. Jiao, W.F. Zhang, Y.Q. Liu and G. Yu, Chin. Sci. Bull., 58, 2733 (2013); https://doi.org/10.1007/s11434-013-5786-2
F. Nourifard and M. Payehghadr, Int. J. Environ. Anal. Chem., 96, 552 (2016); https://doi.org/10.1080/03067319.2016.1172219
L.P. Singh and J.M. Bhatnagar, Talanta, 64, 313 (2004); https://doi.org/10.1016/j.talanta.2004.02.020
V.K. Gupta, A.K. Singh and B. Gupta, Anal. Chim. Acta, 575, 198 (2006); https://doi.org/10.1016/j.aca.2006.05.090
I.V. Krylova, L.D. Labutskaya, M.O. Markova, V.A. Balycheva, P.G. Shangin, A.Y. Akyeva, V.V. Golovina, M.E. Minyaev, A.V. Lalov, V.M. Pechennikov, V.T. Novikov, M.P. Egorov and M.A. Syroeshkin, New J. Chem., 47, 11890 (2023); https://doi.org/10.1039/D3NJ01993D
M.C. Garcia-Lopez, B.M. Munoz-Flores, V.M. Jimenez-Perez, I. Moggio, E. Arias, R. Chan-Navarro and R. Santillan, Dyes Pigments, 106, 188 (2014); https://doi.org/10.1016/j.dyepig.2014.02.021
K. Subramaniam, A.B. Athanas and S. Kalaiyar, Inorg. Chem. Commun., 104, 88 (2019); https://doi.org/10.1016/j.inoche.2019.03.043
C. Gautam, D. Srivastava, G. Kociok-Kohn, S.W. Gosavi, V.K. Sharma, R. Chauhan, D.J. Late, A. Kumar and M. Muddassir, RSC Advances, 13, 9046 (2023); https://doi.org/10.1039/D3RA00344B
P.K.M. Lokhande, K.K. Sonigara, M.M. Jadhav, D.S. Patil, S.S. Soni and N. Sekar, ChemistrySelect, 4, 4044 (2019); https://doi.org/10.1002/slct.201803940
T. Akitsu, B. Miroslaw and S. Sudarsan, Int. J. Mol. Sci., 23, 10005 (2022); https://doi.org/10.3390/ijms231710005
N.R. Moheimani and D. Parlevliet, Renew. Sustain. Energy Rev., 27, 494 (2013); https://doi.org/10.1016/j.rser.2013.07.006
A. Tsaturyan, Y. Machida, T. Akitsu, I. Gozhikova and I. Shcherbakov, J. Mol. Struct., 1162, 54 (2018); https://doi.org/10.1016/j.molstruc.2018.02.082
S. Kagatikar and D. Sunil, J. Electron. Mater., 50, 6708 (2021); https://doi.org/10.1007/s11664-021-09197-9
A.N. Gusev, M.A. Kiskin, E.V. Braga, M.A. Kryukova, G.V. Baryshnikov, N.N. Karaush-Karmazin, V.A. Minaeva, B.F. Minaev, K. Ivaniuk, P. Stakhira, H. Ågren and W. Linert, ACS Appl. Electron. Mater., 3, 3436 (2021); https://doi.org/10.1021/acsaelm.1c00402
L. Yan, R. Li, W. Shen and Z. Qi, J. Lumin., 194, 151 (2018); https://doi.org/10.1016/j.jlumin.2017.10.032
A.N. Gusev, M.A. Kiskin, E.V. Braga, M. Chapran, G. Wiosna-Salyga, G.V. Baryshnikov, V.A. Minaeva, B.F. Minaev, K. Ivaniuk, P. Stakhira, H. Ågren and W. Linert, J. Phys. Chem. C, 123, 11850 (2019); https://doi.org/10.1021/acs.jpcc.9b02171
A.S. Burlov, Y.V. Koshchienko, V.G. Vlasenko, O.P. Demidov, B.V. Chaltsev, M.A. Kiskin, D.A. Garnovskii, A.A. Kolodina, A.N. Gusev, E.V. Braga, I.A. Nauhatsky and W. Linert, Appl. Organomet. Chem., 38, e7375 (2024); https://doi.org/10.1002/aoc.7375
J. Zhang, X. Zhu, A. Zhong, W. Jia, F. Wu, D. Li, H. Tong, C. Wu, W. Tang, P. Zhang, L. Wang and D. Han, Org. Electron., 42, 153 (2017); https://doi.org/10.1016/j.orgel.2016.12.024
C. Che, C. Kwok, S. Lai, A.F. Rausch, W.J. Finkenzeller, N. Zhu and H. Yersin, Chemistry, 16, 233 (2010); https://doi.org/10.1002/chem.200902183
P.G. Cozzi, L.S. Dolci, A. Garelli, M. Montalti, L. Prodi and N. Zaccheroni, New J. Chem., 27, 692 (2003); https://doi.org/10.1039/b209396k
R. Chouk, C. Aguir, M. Bergaoui, J.-P. Djukic and M. Khalfaoui, A computational study to the optoelectronic properties of Al Schiff base complex for Efficient OLED. 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE; 2020, p. 612–5; https://doi.org/10.1109/SSD49366.2020.9364220
Organic Light Emitting Diodes, OLED’s - Principles, Advantages, Materials and Potential Applications n.d. https://www.azom.com/article.aspx?ArticleID=2735 (accessed April 29, 2025).
C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987); https://doi.org/10.1063/1.98799
V. Nishal, D. Singh, R.K. Saini, V. Tanwar, S. Kadyan, R. Srivastava and P.S. Kadyan, Cogent Chem., 1, 1079291 (2015); https://doi.org/10.1080/23312009.2015.1079291
J. Costamagna, J. Vargas, R. Latorre, A. Alvarado and G. Mena, Coord. Chem. Rev., 119, 67 (1992); https://doi.org/10.1016/0010-8545(92)80030-U
N.E. Eltayeb, S.G. Teoh, R. Adnan, J.B.-J. Teh and H.-K. Fun, J. Fluoresc., 21, 1393 (2011); https://doi.org/10.1007/s10895-010-0822-y
V. Liuzzo, W. Oberhauser and A. Pucci, Inorg. Chem. Commun., 13, 686 (2010); https://doi.org/10.1016/j.inoche.2010.03.020
P.H.A. Nayak, H.S.B. Naik, R. Viswanath and B.R. Kirthan, J. Phys. Chem. Solids, 159, 110288 (2021); https://doi.org/10.1016/j.jpcs.2021.110288
A.I. Kornikov, R.E. Mustakimov, A.S. Goloveshkin, L.O. Tcelykh, A.A. Vashchenko, A.V. Medvedko, L.S. Lepnev and V.V. Utochnikova, Org. Electron., 105, 106492 (2022); https://doi.org/10.1016/j.orgel.2022.106492
M. Barwiolek, D. Jankowska, A. Kaczmarek-Kędziera, S. Wojtulewski, L. Skowroński, T. Rerek, P. Popielarski and T.M. Muziol, Molecules, 27, 7396 (2022); https://doi.org/10.3390/molecules27217396
C.U. Vite-Morales, M.Á. Amado-Briseño, R.A. Vázquez-García, J.E. Muñoz-Pérez, M.A. Veloz-Rodríguez, E. Rueda-Soriano, A. Espinosa-Roa and O.J. Hernández-Ortiz, Chemical Physics Impact, 9, 100740 (2024); https://doi.org/10.1016/j.chphi.2024.100740
L. Sun, Y. Chen, M. Sun and Y. Zheng, Chem. Asian J., 18, e202300006 (2023); https://doi.org/10.1002/asia.202300006
Organic Solar Cells: An Introduction to Organic Photovoltaics | Ossila n.d. https://www.ossila.com/pages/organic-photovoltaics-introduction (accessed April 29, 2025).
Z. Gao, L. Guo, Y. Sun, W. Qu, T. Yang, B. Li, J. Li and L. Duan, Org. Electron., 67, 232 (2019); https://doi.org/10.1016/j.orgel.2019.01.023
How Indium Tin Oxide (ITO) Helps Solar Cells Work Better, n.d. https://www.sputtertargets.net/blog/how-indium-tin-oxide-ito-helps-solar-cells-work-better.html (accessed April 29, 2025).
M.L. Petrus, R.K.M. Bouwer, U. Lafont, S. Athanasopoulos, N.C. Greenham and T.J. Dingemans, J. Mater. Chem. A Mater. Energy Sustain., 2, 9474 (2014); https://doi.org/10.1039/C4TA01629G
C.Y. Goreci, J. Chem. Res., 44, 625 (2020); https://doi.org/10.1177/1747519820912671
R. Chouk, C. Aguir, D. Haouanoh, M. Bergaoui, R. Tala-Ighil, E. Stathatos and M. Khalfaoui, J. Mol. Struct., 1196, 676 (2019); https://doi.org/10.1016/j.molstruc.2019.07.026
D. Kilinc, O. Sahin and S. Horoz, Dig. J. Nanomater. Biostruct., 14, 375 (2019).
C.O. Sanchez, J.C. Bernede, L. Cattin, M. Makha and N. Gatica, Thin Solid Films, 562, 495 (2014); https://doi.org/10.1016/j.tsf.2014.04.071
M.L. Petrus, T. Bein, T.J. Dingemans and P. Docampo, J. Mater. Chem. A Mater. Energy Sustain., 3, 12159 (2015); https://doi.org/10.1039/C5TA03046C
M. Abdel-Shakour, W.A. El-Said, I.M. Abdellah, R. Su and A. El-Shafei, J. Mater. Sci. Mater. Electron., 30, 5081 (2019); https://doi.org/10.1007/s10854-019-00806-2
D. Sek, M. Siwy, K. Bijak, M. Filapek, G. Malecki, E.M. Nowak, J. Sanetra, A. Jarczyk-Jedryka, K. Laba, M. Lapkowski and E. Schab-Balcerzak, J. Electroanal. Chem. (Lausanne), 751, 128 (2015); https://doi.org/10.1016/j.jelechem.2015.05.040
A.M. Cantón-Díaz, B.M. Muñoz-Flores, I. Moggio, E. Arias, A. De León, M.C. García-López, R. Santillán, M.E. Ochoa and V.M. Jiménez-Pérez, New J. Chem., 42, 14586 (2018); https://doi.org/10.1039/C8NJ02998A
İ. Sıdır, Y.G. Sıdır, H. Berber and F. Demiray, J. Mol. Struct., 1176, 31 (2019); https://doi.org/10.1016/j.molstruc.2018.08.067
Y. Wang, W. Ye, X. Yang, E. Rezaee, H. Shan, S. Yang, S. Cai, J.-H. Pan, J. Xu and Z.-X. Xu, Synth. Met., 259, 116248 (2020); https://doi.org/10.1016/j.synthmet.2019.116248
A. Irfan, A.G. Al-Sehemi, M.A. Assiri and S. Ullah, Mater. Sci. Semicond. Process., 107, 104855 (2020); https://doi.org/10.1016/j.mssp.2019.104855
N. Nanjundan, R. Narayanasamy, S. Geib, K. Velmurugan, R. Nandhakumar, M.D. Balakumaran and P.T. Kalaichelvan, Polyhedron, 110, 203 (2016); https://doi.org/10.1016/j.poly.2016.02.049
S. Revoju, A. Matuhina, L. Canil, H. Salonen, A. Hiltunen, A. Abate and P. Vivo, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 15486 (2020); https://doi.org/10.1039/D0TC03421E
Z.S. Huang, H. Meier and D. Cao, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 2404 (2016); https://doi.org/10.1039/C5TC04418A
Z. Sembiring, T. Julianti, D.S. Luthfi, A.T. Agustin, S. Bahri, W. Simanjuntak, R. Rinawati and S. Hadi, Asian J. Chem., 35, 316 (2023); https://doi.org/10.14233/ajchem.2023.24039
K. Takahashi, S. Tanaka, M. Yamaguchi, Y. Tunoda, T. Akitsu, M. Sugiyama et al., J. Korean Chem. Soc., 61, 129 (2017); https://doi.org/10.5012/jkcs.2017.61.3.129
A.G. Imer, R.H.B. Syan, M. Gulcan, Y.S. Ocak and A. Tombak, J. Mater. Sci. Mater. Electron., 29, 898 (2018); https://doi.org/10.1007/s10854-017-7986-z
M. Lkadida, B. Es-Sounni, F. Nekkach, A. Boutahar, M. Bakhouch, H. Lemziouka, M.E. Yazidi and M. Lamiae, J. Mol. Struct., 1349, 143746 (2026); https://doi.org/10.1016/j.molstruc.2025.143746
S. Asiri, M.A. Kassem, M.A. Eltaher and K.M. Saad, Int. J. Electrochem. Sci., 15, 6508 (2020); https://doi.org/10.20964/2020.07.72
M. Nasr-Esfahani, M. Zendehdel, N.Y. Nia, B. Jafari and M.K. Babadi, RSC Advances, 4, 15961 (2014); https://doi.org/10.1039/C3RA46531D
S. Thokala and S.P. Singh, ACS Omega, 5, 5608 (2020); https://doi.org/10.1021/acsomega.0c00065
I.J. Al-Busaidi, A. Haque, N.K. Al Rasbi and M.S. Khan, Synth. Met., 257, 116189 (2019); https://doi.org/10.1016/j.synthmet.2019.116189
J. Huang, X. Wang, Y. Xiang, L. Guo and G.B. Chen, Adv. Energy Sustain. Res., 2, 2100016 (2021); https://doi.org/10.1002/aesr.202100016
F.S. Alamro, S.M. Gomha, M. Shaban, A.S. Altowyan, T.Z. Abolibda and H.A. Ahmed, Sci. Rep., 11, 15046 (2021); https://doi.org/10.1038/s41598-021-94533-6
A. Irfan, A.G. Al-Sehemi and A. Kalam, Materials, 15, 8590 (2022); https://doi.org/10.3390/ma15238590
M. Lakshmipathi, S. Tothadi, F. Emmerling, B. Bhattacharya and S. Ghosh, J. Mol. Struct., 1252, 132182 (2022); https://doi.org/10.1016/j.molstruc.2021.132182
K. Upendranath, T. Venkatesh, Y. Arthoba Nayaka, M. Shashank and G. Nagaraju, Inorg. Chem. Commun., 139, 109354 (2022); https://doi.org/10.1016/j.inoche.2022.109354
A. Tahmasbi, A. Jafari and A. Nikoo, Sci. Rep., 13, 10988 (2023); https://doi.org/10.1038/s41598-023-38086-w
M.E. Sánchez Vergara, E. Gómez, E. Toledo Dircio, J.R. Álvarez Bada, S. Cuenca Pérez, J.M. Galván Hidalgo, A. González Hernández and S. Hernández Ortega, Int. J. Mol. Sci., 24, 5255 (2023); https://doi.org/10.3390/ijms24065255
A.F. Akbulatov, A.Y. Akyeva, P.G. Shangin, N.A. Emelianov, I.V. Krylova, M.O. Markova, L.D. Labutskaya, A.V. Mumyatov, E.I. Tuzharov, D.A. Bunin, L.A. Frolova, M.P. Egorov, M.A. Syroeshkin and P.A. Troshin, Membranes, 13, 439 (2023); https://doi.org/10.3390/membranes13040439
K. Chen, X. Xiao, J. Liu, J. Qi, Q. Gao, Y. Ma, Y. Cheng, A. Mei and H. Han, Adv. Mater., 36, 2401319 (2024); https://doi.org/10.1002/adma.202401319
A.O. Tezcan, P. Oruç, N. Tuğluoğlu and S. Eymur, Opt. Quantum Electron., 56, 989 (2024); https://doi.org/10.1007/s11082-024-06770-4
S. Kim, H.J. Bae, S. Park, W. Kim, J. Kim, J.S. Kim, Y. Jung, S. Sul, S.-G. Ihn, C. Noh, S. Kim and Y. You, Nat. Commun., 9, 1211 (2018); https://doi.org/10.1038/s41467-018-03602-4
C. Murawski, K. Leo and M.C. Gather, Adv. Mater., 25, 6801 (2013); https://doi.org/10.1002/adma.201301603
J.V. Caspar, B.P. Sullivan, E.M. Kober and T.J. Meyer, Chem. Phys. Lett., 91, 91 (1982); https://doi.org/10.1016/0009-2614(82)80114-0
C.H. Fan, P. Sun, T.H. Su and C.H. Cheng, Adv. Mater., 23, 2981 (2011); https://doi.org/10.1002/adma.201100610
L.S. Liao, J. He, X. Zhou, M. Lu, Z.H. Xiong, Z.B. Deng, X.Y. Hou and S.T. Lee, J. Appl. Phys., 88, 2386 (2000); https://doi.org/10.1063/1.1286009
V.V. Jarikov and D.Y. Kondakov, J. Appl. Phys., 105, 034905 (2009); https://doi.org/10.1063/1.3072622
M. Yahiro, D. Zou and T. Tsutsui, Synth. Met., 111-112, 245 (2000); https://doi.org/10.1016/S0379-6779(99)00373-2
H. Aziz, Z.D. Popovic and N.X. Hu, Appl. Phys. Lett., 81, 370 (2002); https://doi.org/10.1063/1.1491002
F. So and D. Kondakov, Adv. Mater., 22, 3762 (2010); https://doi.org/10.1002/adma.200902624
C.C. Vidyasagar, B.M. Muñoz Flores, V.M. Jiménez-Pérez and P.M. Gurubasavaraj, Mater. Today Chem., 11, 133 (2019); https://doi.org/10.1016/j.mtchem.2018.09.010
H. Aziz and Z.D. Popovic, Chem. Mater., 16, 4522 (2004); https://doi.org/10.1021/cm040081o
X. Yang, L. Lan, X. Pan, X. Liu, Y. Song, X. Yang, Q. Dong, L. Li, P. Naumov and H. Zhang, Nat. Commun., 13, 7874 (2022); https://doi.org/10.1038/s41467-022-35432-w
X.H. Ding, L.Z. Wang, Y.Z. Chang, C.X. Wei, J.Y. Lin, M.H. Ding and W. Huang, Aggregate, 5, e500 (2024); https://doi.org/10.1002/agt2.500
S. Carrara, What is bioelectronics? Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems 2015:1–4; https://doi.org/10.1017/CBO9781139629539.001
M.A. El-ghamry, K.M. Nassir, F.M. Elzawawi, A.A.A. Aziz and S.M. Abu-El-Wafa, J. Mol. Struct., 1235, 130235 (2021); https://doi.org/10.1016/j.molstruc.2021.130235
K. Mohanan, N. Subhadrambika, R. Selwin Joseyphus, S.S. Swathy and V.P. Nisha, J. Saudi Chem. Soc., 20, 379 (2016); https://doi.org/10.1016/j.jscs.2012.07.007
Mousa E, Tammam AK, Refaat AM, Mohamed GG., Scientific Reports, 15, 31202 (2025); https://doi.org/10.1038/s41598-025-16628-8