Copyright (c) 2025 Dr Manjuraj T, Prashanth Kumar P N, Vasantha Kumar B C , Mohammed Imadadulla, Shiva H. P. Rudrappa , Saleem M. Desai, Lokesh M R

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Structure of Novel Ruthenium(II) Mixed Ligands Complexes: Density Functional Theory, DNA Binding and Antimicrobial Studies via PACT Therapy
Corresponding Author(s) : P.N. Prashanth Kumar
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
Ruthenium(II)-based complexes exhibited efficient light-harvesting capabilities that facilitate the enhanced generation of hydroxyl radicals, thereby significantly promoting antibacterial activity. The novel Ru(II) complexes can be represented as [Ru(II)(bfq)(bipy)]Cl2 (Ru-L1), [Ru(II)(bpdc)(bipy)2]Cl2 (Ru-L2) and [Ru(II)(bfq)(NCS)2]Cl2 (Ru-L3), where bfq = benzofuranquinoline carboxylic acid and bipy = bipyridine. The synthesized Ru(II) complexes were characterized with 1H NMR, IR and UV-visible techniques. The physical measurements such as viscosity measurements and denaturation thermal studies explore the behaviour of DNA binding of the synthesized Ru(II) complexes. In this context, the studies on DFT, molecular electrostatic potential and antimicrobial photodynamic therapy against Escherichia coli cells were also conducted. The obtained results show significant inhibition growth of bacterial cells was determined via PACT therapy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.R.P. Naik, H.S. Bhojya Naik, T.R. Ravikumar Naik, H.R. Naika, K. Gouthamchandra, R. Mahmood and B.M.K. Ahamed, Eur. J. Med. Chem., 44, 981 (2009); https://doi.org/10.1016/j.ejmech.2008.07.006
- V.F. Vasconcellos, G.N. Marta, E.M.K. da Silva, A.F.T. Gois, T.B. de Castria and R. Riera, Cochrane Database Systemat. Rev., 2020, CD009256 (2020); https://doi.org/10.1002/14651858.CD009256.pub3
- R. Oun, Y.E. Moussa and N.J. Wheate, Dalton Trans., 47, 6645 (2018); https://doi.org/10.1039/C8DT00838H
- T.G.A. Reuvers, R. Kanaar and J. Nonnekens, Cancers, 12, 2098 (2020); https://doi.org/10.3390/cancers12082098
- M. Sharma, P. Anand, Y.S. Padwad, V. Dogra and V. Acharya, Free Radic. Biol. Med., 178, 174 (2022); https://doi.org/10.1016/j.freeradbiomed.2021.11.033
- S.U. Khan, K. Fatima, S. Aisha and F. Malik, Cell Commun. Signal., 22, 109 (2024); https://doi.org/10.1186/s12964-023-01302-1
- M.C. Prabhakara, H.S. Bhojya Naik, H.M. Kumaraswamy and V. Krishna, Nucleosides Nucleotides Nucleic Acids, 26, 459 (2007); https://doi.org/10.1080/15257770701426237
- B. Sreekanth, G. Krishnamurthy, H.S. Bhojya Naik and T.K. Vishnuvardhan, Nucleosides Nucleotides Nucleic Acids, 31, 1 (2012); https://doi.org/10.1080/15257770.2011.636415
- N. Sunitha, C.I.S. Raj and B.S. Kumari, Res. Chem., 4, 100588 (2022); https://doi.org/10.1016/j.rechem.2022.1005881196
- S.A. Rupa, M.A.M. Patwary, W.E. Ghann, A. Abdullahi, A.K.M.R. Uddin, M.M. Mahmud, M.A. Haque, J. Uddin and M. Kazi, RSC Adv., 13, 23819 (2023); https://doi.org/10.1039/D3RA04364A
- J. Joseph and B.H. Mehta, Russ. J. Coord. Chem., 33, 124 (2007); https://doi.org/10.1134/S1070328407020091
- N. Agrawal, R. Mishra, S. Pathak, A. Goyal and K. Shah, Lett. Org. Chem., 20, 123 (2023); https://doi.org/10.2174/1570178619666220831122614
- M. Chen, X. Chen, G. Huang, Y. Jiang, Y. Gou and J. Deng, J. Mol. Struct., 1268, 133730 (2022); https://doi.org/10.1016/j.molstruc.2022.133730
- K. Abe, K. Matsufuji, M. Ohba and H. Okawa, Inorg. Chem., 41, 4461 (2002); https://doi.org/10.1021/ic020002f
- H.Q. Chang, L. Jia, J. Xu, W.N. Wu, T.-F. Zhu, R.-H. Chen, T.-L. Ma, Y. Wang and Z.-Q. Xu, Transition Met. Chem., 40, 485 (2015); https://doi.org/10.1007/s11243-015-9938-x
- X.-Q. Zhou, Y. Li, D.-Y. Zhang, Y. Nie, Z.-J. Li, W. Gu, X. Liu, J.-L. Tian, and S.-P. Yan, Eur. J. Med. Chem., 114, 244 (2016); https://doi.org/10.1016/j.ejmech.2016.02.055
- I. Warad, H. Suboh, N. Al-Zaqri, A. Alsalme, F.A. Alharthi, M.M. Aljohani and A. Zarrouk, RSC Adv., 10, 21806 (2020); https://doi.org/10.1039/D0RA04323K
- J. Devi, B. Kumar and B. Taxak, Inorg. Chem. Commun., 139, 109208 (2022); https://doi.org/10.1016/j.inoche.2022.109208
- B. Kumar, J. Devi, P. Saini, D. Khurana, K. Singh and Y. Singh, Res. Chem. Intermed., 50, 3915 (2024); https://doi.org/10.1007/s11164-024-05328-z
- T. Manjuraj, G. Krishnamurthy, Y.D. Bodke and H.S. Bhojya Naik, J. Mol. Struct., 1148, 231 (2017); https://doi.org/10.1016/j.molstruc.2017.07.020
- L. Balapoor, R. Bikas and M. Dargahi, Inorg. Chim. Acta, 510, 119734 (2020); https://doi.org/10.1016/j.ica.2020.119734
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, edn 2, pp. 487 (1984).
- K. Nakamoto, eds.: J.M. Chalmers and P.R. Griffiths, Infrared and Raman Spectra of Inorganic and Coordination Compounds, In: Handbook of Vibrational Spectroscopy, Chichester, UK: John Wiley & Sons, Ltd. (2006).
- M. Shebl, M.A. El-Ghamry, S.M.E. Khalil and M.A.A. Kishk, Spectrochim. Acta A Mol. Biomol. Spectrosc., 126, 232 (2014); https://doi.org/10.1016/j.saa.2014.02.014
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern Pvt. Ltd., New Delhi, edn 3 (1972).
- K.N. Aneesrahman, K. Ramaiah, G. Rohini, G.P. Stefy, N.S.P. Bhuvanesh and A. Sreekanth, Inorg. Chim. Acta, 492, 131 (2019); https://doi.org/10.1016/j.ica.2019.04.019
- T. Manjuraj, G. Krishnamurthy, Y.D. Bodke, H.S. Bhojya Naik and H.S. Anil Kumar, J. Mol. Struct., 1171, 481 (2018); https://doi.org/10.1016/j.molstruc.2018.06.055
- K.R. Sangeetha Gowda, H.S. Bhojya Naik, H.V. Sudeep, B. Vinay Kumar, C.N. Sudhamani, T.R. Ravikumar Naik and G. Krishnamurthy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 105, 229 (2013); https://doi.org/10.1016/j.saa.2012.12.011
- R. Arulraj, J. Mol. Struct., 1248, 131483 (2022); https://doi.org/10.1016/j.molstruc.2021.131483
- K. Funatsu, T. Miyao and M. Arakawa, Curr. Computeraided Drug Des., 7, 1 (2011); https://doi.org/10.2174/157340911793743556
- S. Aslam, M. Haroon, T. Akhtar, M. Arshad, M. Khalid, Z. Shafiq, M. Imran and A. Ullah, ACS Omega, 7, 31036 (2022); https://doi.org/10.1021/acsomega.2c02805
- K. Upendranath, T. Venkatesh, Y. Arthoba Nayaka, M. Shashank and G. Nagaraju, Inorg. Chem. Commun., 139, 109354 (2022); https://doi.org/10.1016/j.inoche.2022.109354
- G. Singh, A. Singh, R.K. Verma, R. Mall and U. Azeem, Comput. Biol. Chem., 72, 45 (2018); https://doi.org/10.1016/j.compbiolchem.2017.12.010
- M. Musthafa, R. Konakanchi, R. Ganguly and A. Sreekanth, Phosphorus Sulfur Silicon Relat. Elem., 195, 331 (2020); https://doi.org/10.1080/10426507.2019.1699924
References
H.R.P. Naik, H.S. Bhojya Naik, T.R. Ravikumar Naik, H.R. Naika, K. Gouthamchandra, R. Mahmood and B.M.K. Ahamed, Eur. J. Med. Chem., 44, 981 (2009); https://doi.org/10.1016/j.ejmech.2008.07.006
V.F. Vasconcellos, G.N. Marta, E.M.K. da Silva, A.F.T. Gois, T.B. de Castria and R. Riera, Cochrane Database Systemat. Rev., 2020, CD009256 (2020); https://doi.org/10.1002/14651858.CD009256.pub3
R. Oun, Y.E. Moussa and N.J. Wheate, Dalton Trans., 47, 6645 (2018); https://doi.org/10.1039/C8DT00838H
T.G.A. Reuvers, R. Kanaar and J. Nonnekens, Cancers, 12, 2098 (2020); https://doi.org/10.3390/cancers12082098
M. Sharma, P. Anand, Y.S. Padwad, V. Dogra and V. Acharya, Free Radic. Biol. Med., 178, 174 (2022); https://doi.org/10.1016/j.freeradbiomed.2021.11.033
S.U. Khan, K. Fatima, S. Aisha and F. Malik, Cell Commun. Signal., 22, 109 (2024); https://doi.org/10.1186/s12964-023-01302-1
M.C. Prabhakara, H.S. Bhojya Naik, H.M. Kumaraswamy and V. Krishna, Nucleosides Nucleotides Nucleic Acids, 26, 459 (2007); https://doi.org/10.1080/15257770701426237
B. Sreekanth, G. Krishnamurthy, H.S. Bhojya Naik and T.K. Vishnuvardhan, Nucleosides Nucleotides Nucleic Acids, 31, 1 (2012); https://doi.org/10.1080/15257770.2011.636415
N. Sunitha, C.I.S. Raj and B.S. Kumari, Res. Chem., 4, 100588 (2022); https://doi.org/10.1016/j.rechem.2022.1005881196
S.A. Rupa, M.A.M. Patwary, W.E. Ghann, A. Abdullahi, A.K.M.R. Uddin, M.M. Mahmud, M.A. Haque, J. Uddin and M. Kazi, RSC Adv., 13, 23819 (2023); https://doi.org/10.1039/D3RA04364A
J. Joseph and B.H. Mehta, Russ. J. Coord. Chem., 33, 124 (2007); https://doi.org/10.1134/S1070328407020091
N. Agrawal, R. Mishra, S. Pathak, A. Goyal and K. Shah, Lett. Org. Chem., 20, 123 (2023); https://doi.org/10.2174/1570178619666220831122614
M. Chen, X. Chen, G. Huang, Y. Jiang, Y. Gou and J. Deng, J. Mol. Struct., 1268, 133730 (2022); https://doi.org/10.1016/j.molstruc.2022.133730
K. Abe, K. Matsufuji, M. Ohba and H. Okawa, Inorg. Chem., 41, 4461 (2002); https://doi.org/10.1021/ic020002f
H.Q. Chang, L. Jia, J. Xu, W.N. Wu, T.-F. Zhu, R.-H. Chen, T.-L. Ma, Y. Wang and Z.-Q. Xu, Transition Met. Chem., 40, 485 (2015); https://doi.org/10.1007/s11243-015-9938-x
X.-Q. Zhou, Y. Li, D.-Y. Zhang, Y. Nie, Z.-J. Li, W. Gu, X. Liu, J.-L. Tian, and S.-P. Yan, Eur. J. Med. Chem., 114, 244 (2016); https://doi.org/10.1016/j.ejmech.2016.02.055
I. Warad, H. Suboh, N. Al-Zaqri, A. Alsalme, F.A. Alharthi, M.M. Aljohani and A. Zarrouk, RSC Adv., 10, 21806 (2020); https://doi.org/10.1039/D0RA04323K
J. Devi, B. Kumar and B. Taxak, Inorg. Chem. Commun., 139, 109208 (2022); https://doi.org/10.1016/j.inoche.2022.109208
B. Kumar, J. Devi, P. Saini, D. Khurana, K. Singh and Y. Singh, Res. Chem. Intermed., 50, 3915 (2024); https://doi.org/10.1007/s11164-024-05328-z
T. Manjuraj, G. Krishnamurthy, Y.D. Bodke and H.S. Bhojya Naik, J. Mol. Struct., 1148, 231 (2017); https://doi.org/10.1016/j.molstruc.2017.07.020
L. Balapoor, R. Bikas and M. Dargahi, Inorg. Chim. Acta, 510, 119734 (2020); https://doi.org/10.1016/j.ica.2020.119734
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, edn 2, pp. 487 (1984).
K. Nakamoto, eds.: J.M. Chalmers and P.R. Griffiths, Infrared and Raman Spectra of Inorganic and Coordination Compounds, In: Handbook of Vibrational Spectroscopy, Chichester, UK: John Wiley & Sons, Ltd. (2006).
M. Shebl, M.A. El-Ghamry, S.M.E. Khalil and M.A.A. Kishk, Spectrochim. Acta A Mol. Biomol. Spectrosc., 126, 232 (2014); https://doi.org/10.1016/j.saa.2014.02.014
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern Pvt. Ltd., New Delhi, edn 3 (1972).
K.N. Aneesrahman, K. Ramaiah, G. Rohini, G.P. Stefy, N.S.P. Bhuvanesh and A. Sreekanth, Inorg. Chim. Acta, 492, 131 (2019); https://doi.org/10.1016/j.ica.2019.04.019
T. Manjuraj, G. Krishnamurthy, Y.D. Bodke, H.S. Bhojya Naik and H.S. Anil Kumar, J. Mol. Struct., 1171, 481 (2018); https://doi.org/10.1016/j.molstruc.2018.06.055
K.R. Sangeetha Gowda, H.S. Bhojya Naik, H.V. Sudeep, B. Vinay Kumar, C.N. Sudhamani, T.R. Ravikumar Naik and G. Krishnamurthy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 105, 229 (2013); https://doi.org/10.1016/j.saa.2012.12.011
R. Arulraj, J. Mol. Struct., 1248, 131483 (2022); https://doi.org/10.1016/j.molstruc.2021.131483
K. Funatsu, T. Miyao and M. Arakawa, Curr. Computeraided Drug Des., 7, 1 (2011); https://doi.org/10.2174/157340911793743556
S. Aslam, M. Haroon, T. Akhtar, M. Arshad, M. Khalid, Z. Shafiq, M. Imran and A. Ullah, ACS Omega, 7, 31036 (2022); https://doi.org/10.1021/acsomega.2c02805
K. Upendranath, T. Venkatesh, Y. Arthoba Nayaka, M. Shashank and G. Nagaraju, Inorg. Chem. Commun., 139, 109354 (2022); https://doi.org/10.1016/j.inoche.2022.109354
G. Singh, A. Singh, R.K. Verma, R. Mall and U. Azeem, Comput. Biol. Chem., 72, 45 (2018); https://doi.org/10.1016/j.compbiolchem.2017.12.010
M. Musthafa, R. Konakanchi, R. Ganguly and A. Sreekanth, Phosphorus Sulfur Silicon Relat. Elem., 195, 331 (2020); https://doi.org/10.1080/10426507.2019.1699924