Copyright (c) 2025 MOHD SHAHZAD, NAMAN CHAUDHARY, SHASTI BALLABH MISHRA

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, DFT Calculation and Evaluation of Antimicrobial, Antioxidant and Anticancer Properties of Cadmium(II) Complex of N-[2-Hydroxy-3-methylbenzyl]valine
Corresponding Author(s) : Mohd Shahzad
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
In this work, a novel cadmium(II) complex was synthesized through a complexation reaction between cadmium acetate and a ligand obtained through nucleophilic substitution. The structural and electronic properties were examined by IR, NMR, UV-Vis spectroscopy, SEM, PXRD and DFT calculation techniques. FT-IR validated the metal-ligand coordination, whereas UV-Vis spectra revealed electronic changes and metal-to-ligand charge transfer (MLCT) during cadmium complexation. SEM demonstrated morphological alterations, with the complex displaying a dense and stable architecture. XRD study indicated a transition from a monoclinic (P21/a) crystal system in the ligand to a hexagonal (P63/mmc) system in the metal complex, implying structural reorganization. The biological activities of the ligand before and after coordination were evaluated and compared in terms of antimicrobial activity (against Aspergillus niger and Escherichia coli), antioxidant activity (using the DPPH radical scavenging assay), and anticancer activity (against MCF-7 breast cancer cells). In antimicrobial activity, Cd(II) complex demonstrated enhanced antifungal activity against A. niger while ligand has greater antibacterial efficacy against E. coli. Antioxidant activity of ligand exhibited superior radical scavenging at low concentration while Cd(II) complex approached the greater potency of ascorbic acid (standard) at higher doses. Anticancer properties evaluated the complex displayed the stronger anticancer effects than the ligand due to metal coordination with ligand.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wu, M. Wang, Z. Liu and C. Fu, Microorganisms, 13, 1570 (2025); https://doi.org/10.3390/microorganisms13071570
- S. Kothandan and A. Sheela, Mini-Rev. Med. Chem., 21, 1909 (2021); https://doi.org/10.2174/1389557521666210308143522
- F. Arjmand and A. Jamsheera, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 78, 45 (2011); https://doi.org/10.1016/j.saa.2010.06.009
- A.M. Nijasure, V.N. Joshi and A.D. Sawant, J. Inorg. Biochem., 73, 109 (1999); https://doi.org/10.1016/S0162-0134(99)00008-2
- F. Mohammadi, H. Mansouri-Torshizi, M. Saeidifar, E. Dehghanian, E. Skorepova, M. Dusek and K. Abdi, Nucleosides Nucleotides Nucleic Acids, 41, 97 (2022); https://doi.org/10.1080/15257770.2021.2011914
- Z. Vargová, P. Olejníková, G. Kuzderová, M. Rendošová, J. Havlíčková, R. Gyepes and M. Vilková, Bioorg. Chem., 141, 106907 (2023); https://doi.org/10.1016/j.bioorg.2023.106907
- G. Sasikumar, A. Subramani, R. Tamilarasan, P. Rajesh, P. Sasikumar, S. Albukhaty, M.K.A. Mohammed, S. Karthikeyan, Z.T. Al‑Aqbi, F. A.J. Al‑Doghachi and Y.H. Taufiq‑Yap, Molecules, 8, 2931 (2023); https://doi.org/10.3390/molecules28072931
- S. Thota, D.A. Rodrigues, D.C. Crans and E.J. Barreiro, J. Med. Chem., 61, 5805 (2018); https://doi.org/10.1021/acs.jmedchem.7b01689
- J. Lv, T. Liu, S. Cai, X. Wang, L. Liu and Y. Wang, J. Inorg. Biochem., 100, 1888 (2006); https://doi.org/10.1016/j.jinorgbio.2006.07.014
- W. K. Kim, J. M. An, Y. J. Lim, K. Kim, Y. H. Kim and D. Kim, Mater. Today Adv., 25, 100569 (2025); https://doi.org/10.1016/j.mtadv.2025.100569
- O.A. Dar, S.A. Lone, M.A. Malik, M.Y. Wani, M.I.A. Talukdar, A S. Al-Bogami, A.A. Hashmi and A. Ahmad, Appl. Organomet. Chem., 33, e5128 (2019); https://doi.org/10.1002/aoc.5128
- A. Frei, A.G. Elliott, A. Kan, H. Dinh, S. Bräse, A.E. Bruce, M.R. Bruce, F. Chen, D. Humaidy, N. Jung, A.P. King, P.G. Lye, H.K. Maliszewska, A.M. Mansour, D. Matiadis, M.P. Muñoz, T.-Y. Pai, S. Pokhrel, P.J. Sadler, M. Sagnou, M. Taylor, J.J. Wilson, D. Woods, J. Zuegg, W. Meyer, A.K. Cain, M.A. Cooper and M.A.T. Blaskovich, JACS Au, 2, 2277 (2022); https://doi.org/10.1021/jacsau.2c00308
- I. Waziri, S. Sookai, T.L. Yusuf, K.A. Olofinsan and A.J. Muller, Appl. Organomet. Chem., 39, e70162 (2025); https://doi.org/10.1002/aoc.70162
- S. Abdolmaleki, S. Khaksar, A. Aliabadi, A. Panjehpour, E. Motieiyan, D. Marabello, M. H. Faraji and M. Beihaghi, Toxicology, 492, 153516 (2023); https://doi.org/10.1016/j.tox.2023.153516
- S. Adhikari, P. Nath, A. Das, A. Datta, N. Baildya, A.K. Duttaroy and S. Pathak, Biomed. Pharmacother., 171, 116211 (2024); https://doi.org/10.1016/j.biopha.2024.116211
- H. Y. Khan, M. F. Ansari, S. Tabassum, and F. Arjmand, Drug Discov. Today, 29, 104055 (2024); https://doi.org/10.1016/j.drudis.2024.104055
- P.E. Marinova and K.D. Tamahkyarova, Compounds, 5, 14 (2025); https://doi.org/10.3390/compounds5020014
- M.S.A. Mansour, A.T. Abdelkarim, A.A. El-Sherif and W.H. Mahmoud, BMC Chem., 18 150 (2024); https://doi.org/10.1186/s13065-024-01239-7
- J. Dong, L. Li, G. Liu, T. Xu, and D. Wang, J. Mol. Struct., 986, 57 (2011); https://doi.org/10.1016/j.molstruc.2010.11.036
- M.M. Salama, S.G. Ahmed and S.S. Hassan, Adv. Biol. Chem., 7, 182 (2017); https://doi.org/10.4236/abc.2017.75013
- D. Dinku, T.B. Demissie, I.N. Beas and T. Desalegn, Results Chem., 8, 101562 (2024); https://doi.org/10.1016/j.rechem.2024.101562
- V. Tugarinov, V. Venditti, and G. M. Clore, J. Biomol. NMR, 58, 1 (2013); https://doi.org/10.1007/s10858-013-9803-1
- J. Lv, T. Liu, S. Cai, X. Wang, L. Liu and Y. Wang, J. Inorg. Biochem., 100, 1888 (2006); https://doi.org/10.1016/j.jinorgbio.2006.07.014
- H.L. Singh, Main Group Metal Chem., 39, 67 (2016); https://doi.org/10.1515/mgmc-2015-0039
- M.A. Ashraf, A. Wajid, K. Mahmood, M.J. Maah and I. Yusoff, Orient. J. Chem., 27, 260 (2011).
- S. Mandal, G. Das and H. Askari, RSC Adv., 4, 24796 (2014); https://doi.org/10.1039/C4RA01288G
- S. Musa, S.O. Idris, D.A. Onu and A.B. Suleiman, Avicenna J. Environ. Health Eng., 6, 100 (2019); https://doi.org/10.34172/ajehe.2019.13
- E. López-Torres and M. A. Mendiola, Polyhedron, 24, 1435 (2005); https://doi.org/10.1016/j.poly.2005.03.093
- K.A. Dahlous, A.A.M. Alotaibi, N. Dege, A. El-Faham, S.M. Soliman and H.M. Refaat, Crystals, 12, 861 (2022); https://doi.org/10.3390/cryst12060861
- M.I. Khan, A. Khan, I. Hussain, M.A. Khan, S. Gul, M. Iqbal, I.-U. Rahman and F. Khuda, Inorg. Chem. Commun., 35, 104 (2013); https://doi.org/10.1016/j.inoche.2013.06.014
- N. Sridevi and D. Madheswari, Polyhedron, 282, 117796 (2025); https://doi.org/10.1016/j.poly.2025.117796
- W.H. Mahmoud, R.G. Deghadi and G.G. Mohamed, Appl. Organomet. Chem., 32, e4289 (2018); https://doi.org/10.1002/aoc.4289
- Z. Chen, R. Świsłocka, R. Choińska, K. Marszałek, A. Dąbrowska, W. Lewandowski and H. Lewandowska, Int. J. Mol. Sci., 25, 11775 (2024); https://doi.org/10.3390/ijms252111775
- M. Armat, T.O. Bakhshaiesh, M. Sabzichi, D. Shanehbandi, S. Sharifi, O. Molavi, J. Mohammadian, M.S. Hejazi and N. Samadi, Bosn. J. Basic Med. Sci., 16, 28 (2016); https://doi.org/10.17305/bjbms.2016.674
References
S. Wu, M. Wang, Z. Liu and C. Fu, Microorganisms, 13, 1570 (2025); https://doi.org/10.3390/microorganisms13071570
S. Kothandan and A. Sheela, Mini-Rev. Med. Chem., 21, 1909 (2021); https://doi.org/10.2174/1389557521666210308143522
F. Arjmand and A. Jamsheera, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 78, 45 (2011); https://doi.org/10.1016/j.saa.2010.06.009
A.M. Nijasure, V.N. Joshi and A.D. Sawant, J. Inorg. Biochem., 73, 109 (1999); https://doi.org/10.1016/S0162-0134(99)00008-2
F. Mohammadi, H. Mansouri-Torshizi, M. Saeidifar, E. Dehghanian, E. Skorepova, M. Dusek and K. Abdi, Nucleosides Nucleotides Nucleic Acids, 41, 97 (2022); https://doi.org/10.1080/15257770.2021.2011914
Z. Vargová, P. Olejníková, G. Kuzderová, M. Rendošová, J. Havlíčková, R. Gyepes and M. Vilková, Bioorg. Chem., 141, 106907 (2023); https://doi.org/10.1016/j.bioorg.2023.106907
G. Sasikumar, A. Subramani, R. Tamilarasan, P. Rajesh, P. Sasikumar, S. Albukhaty, M.K.A. Mohammed, S. Karthikeyan, Z.T. Al‑Aqbi, F. A.J. Al‑Doghachi and Y.H. Taufiq‑Yap, Molecules, 8, 2931 (2023); https://doi.org/10.3390/molecules28072931
S. Thota, D.A. Rodrigues, D.C. Crans and E.J. Barreiro, J. Med. Chem., 61, 5805 (2018); https://doi.org/10.1021/acs.jmedchem.7b01689
J. Lv, T. Liu, S. Cai, X. Wang, L. Liu and Y. Wang, J. Inorg. Biochem., 100, 1888 (2006); https://doi.org/10.1016/j.jinorgbio.2006.07.014
W. K. Kim, J. M. An, Y. J. Lim, K. Kim, Y. H. Kim and D. Kim, Mater. Today Adv., 25, 100569 (2025); https://doi.org/10.1016/j.mtadv.2025.100569
O.A. Dar, S.A. Lone, M.A. Malik, M.Y. Wani, M.I.A. Talukdar, A S. Al-Bogami, A.A. Hashmi and A. Ahmad, Appl. Organomet. Chem., 33, e5128 (2019); https://doi.org/10.1002/aoc.5128
A. Frei, A.G. Elliott, A. Kan, H. Dinh, S. Bräse, A.E. Bruce, M.R. Bruce, F. Chen, D. Humaidy, N. Jung, A.P. King, P.G. Lye, H.K. Maliszewska, A.M. Mansour, D. Matiadis, M.P. Muñoz, T.-Y. Pai, S. Pokhrel, P.J. Sadler, M. Sagnou, M. Taylor, J.J. Wilson, D. Woods, J. Zuegg, W. Meyer, A.K. Cain, M.A. Cooper and M.A.T. Blaskovich, JACS Au, 2, 2277 (2022); https://doi.org/10.1021/jacsau.2c00308
I. Waziri, S. Sookai, T.L. Yusuf, K.A. Olofinsan and A.J. Muller, Appl. Organomet. Chem., 39, e70162 (2025); https://doi.org/10.1002/aoc.70162
S. Abdolmaleki, S. Khaksar, A. Aliabadi, A. Panjehpour, E. Motieiyan, D. Marabello, M. H. Faraji and M. Beihaghi, Toxicology, 492, 153516 (2023); https://doi.org/10.1016/j.tox.2023.153516
S. Adhikari, P. Nath, A. Das, A. Datta, N. Baildya, A.K. Duttaroy and S. Pathak, Biomed. Pharmacother., 171, 116211 (2024); https://doi.org/10.1016/j.biopha.2024.116211
H. Y. Khan, M. F. Ansari, S. Tabassum, and F. Arjmand, Drug Discov. Today, 29, 104055 (2024); https://doi.org/10.1016/j.drudis.2024.104055
P.E. Marinova and K.D. Tamahkyarova, Compounds, 5, 14 (2025); https://doi.org/10.3390/compounds5020014
M.S.A. Mansour, A.T. Abdelkarim, A.A. El-Sherif and W.H. Mahmoud, BMC Chem., 18 150 (2024); https://doi.org/10.1186/s13065-024-01239-7
J. Dong, L. Li, G. Liu, T. Xu, and D. Wang, J. Mol. Struct., 986, 57 (2011); https://doi.org/10.1016/j.molstruc.2010.11.036
M.M. Salama, S.G. Ahmed and S.S. Hassan, Adv. Biol. Chem., 7, 182 (2017); https://doi.org/10.4236/abc.2017.75013
D. Dinku, T.B. Demissie, I.N. Beas and T. Desalegn, Results Chem., 8, 101562 (2024); https://doi.org/10.1016/j.rechem.2024.101562
V. Tugarinov, V. Venditti, and G. M. Clore, J. Biomol. NMR, 58, 1 (2013); https://doi.org/10.1007/s10858-013-9803-1
J. Lv, T. Liu, S. Cai, X. Wang, L. Liu and Y. Wang, J. Inorg. Biochem., 100, 1888 (2006); https://doi.org/10.1016/j.jinorgbio.2006.07.014
H.L. Singh, Main Group Metal Chem., 39, 67 (2016); https://doi.org/10.1515/mgmc-2015-0039
M.A. Ashraf, A. Wajid, K. Mahmood, M.J. Maah and I. Yusoff, Orient. J. Chem., 27, 260 (2011).
S. Mandal, G. Das and H. Askari, RSC Adv., 4, 24796 (2014); https://doi.org/10.1039/C4RA01288G
S. Musa, S.O. Idris, D.A. Onu and A.B. Suleiman, Avicenna J. Environ. Health Eng., 6, 100 (2019); https://doi.org/10.34172/ajehe.2019.13
E. López-Torres and M. A. Mendiola, Polyhedron, 24, 1435 (2005); https://doi.org/10.1016/j.poly.2005.03.093
K.A. Dahlous, A.A.M. Alotaibi, N. Dege, A. El-Faham, S.M. Soliman and H.M. Refaat, Crystals, 12, 861 (2022); https://doi.org/10.3390/cryst12060861
M.I. Khan, A. Khan, I. Hussain, M.A. Khan, S. Gul, M. Iqbal, I.-U. Rahman and F. Khuda, Inorg. Chem. Commun., 35, 104 (2013); https://doi.org/10.1016/j.inoche.2013.06.014
N. Sridevi and D. Madheswari, Polyhedron, 282, 117796 (2025); https://doi.org/10.1016/j.poly.2025.117796
W.H. Mahmoud, R.G. Deghadi and G.G. Mohamed, Appl. Organomet. Chem., 32, e4289 (2018); https://doi.org/10.1002/aoc.4289
Z. Chen, R. Świsłocka, R. Choińska, K. Marszałek, A. Dąbrowska, W. Lewandowski and H. Lewandowska, Int. J. Mol. Sci., 25, 11775 (2024); https://doi.org/10.3390/ijms252111775
M. Armat, T.O. Bakhshaiesh, M. Sabzichi, D. Shanehbandi, S. Sharifi, O. Molavi, J. Mohammadian, M.S. Hejazi and N. Samadi, Bosn. J. Basic Med. Sci., 16, 28 (2016); https://doi.org/10.17305/bjbms.2016.674