Copyright (c) 2025 Ragavi durga, Rakkappan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Morphological and Electrochemical Properties of Gd doped Fe3O4 Nanoparticles for Supercapacitor Applications
Corresponding Author(s) : J. Ragavi Durga
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
In this study, Fe3O4 and gadolinium-doped Fe3O4 nanoparticles were synthesized using the hydrothermal method. The impact of doping on the structural, morphological and optical properties of Gd-Fe3O4 was investigated. The XRD analysis indicated that the synthesized samples had a spinel cubic structure and no other secondary phase was detected at Gd-Fe3O4 nanoparticles. The FTIR studies demonstrate the presence of characteristic peaks associated with tetrahedral and octahedral vibrations, which support the existence of spinel structure. The nanoscopic phase of the particles size was confirmed by the histogram analysis derived from FESEM images, which ranges from 58 to 62 nm. EDAX analysis was employed to ascertain the distribution of Gd in the Gd-Fe3O4 sample. The optical investigations indicate that the indirect bandgaps decrease from 3.8 to 3.6 eV. Cyclic voltammetry revealed the pseudocapacitive behavior of the synthesized materials, with the Gd-Fe3O4 electrode exhibiting a significantly higher specific capacitance (692 F g–1) compared to the Fe3O4 electrode (295 F g–1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.H. Taabodi, T. Niknam, S.M. Sharifhosseini, H.A. Aghajari and S. Shojaeiyan, J. Power Sources, 641, 236832 (2025); https://doi.org/10.1016/j.jpowsour.2025.236832
- G. Zubi, R. Dufo-López, M. Carvalho and G. Pasaoglu, Renew. Sustain. Energy Rev., 89, 292 (2018); https://doi.org/10.1016/j.rser.2018.03.002
- M. Salado and E. Lizundia, Mater. Today Energy, 28, 101064 (2022); https://doi.org/10.1016/j.mtener.2022.101064
- L. Liu, X. Zhang, Y. Liu and X. Gong, ACS Appl. Electron. Mater., 7, 2233 (2025); https://doi.org/10.1021/acsaelm.5c00069
- K. Chen, S. Song and D. Xue, J. Mater. Chem. A Mater. Energy Sustain., 3, 2441 (2015); https://doi.org/10.1039/C4TA06989G
- K.W. Qiu, H.L. Yan, D.Y. Zhang, Y. Lu, J.B. Cheng, W.Q. Zhao, C.L. Wang, Y.H. Zhang, X.M. Liu, C.W. Cheng and Y.S. Luo, Electrochim. Acta, 141, 248 (2014); https://doi.org/10.1016/j.electacta.2014.07.074
- S.H. Kazemi, A. Asghari and M.A. Kiani, Electrochim. Acta, 138, 9 (2014); https://doi.org/10.1016/j.electacta.2014.06.094
- J. Xu, L. Gao, J.Y. Cao, W.C. Wang and Z.D. Chen, Electrochim. Acta, 56, 732 (2010); https://doi.org/10.1016/j.electacta.2010.09.092
- M. Aghazadeh and M.R. Ganjali, J. Mater. Sci. Mater. Electron., 29, 4981 (2018); https://doi.org/10.1007/s10854-017-8459-0
- S.C. Pang, W.H. Khoh and S.F. Chin, J. Mater. Sci., 45, 5598 (2010); https://doi.org/10.1007/s10853-010-4622-1
- V.D. Nithya and N.S. Arul, J. Mater. Chem. A Mater. Energy Sustain., 4, 10767 (2016); https://doi.org/10.1039/C6TA02582J
- P. Akhtar, M.N. Akhtar, M.A. Baqir, A. Ahmad, M.U. Khallidoon, M. Farhan and M.A. Khan, J. Mater. Sci. Mater. Electron., 32, 7692 (2021); https://doi.org/10.1007/s10854-021-05487-4
- H. Mohammadi, E. Nekobahr, J. Akhtari, M. Saeedi, J. Akbari and F. Fathi, Toxicol. Rep., 8, 331 (2021); https://doi.org/10.1016/j.toxrep.2021.01.012
- G.H. Chen and H.S. Chen, ACS Appl. Nano Mater., 3, 8858 (2020); https://doi.org/10.1021/acsanm.0c01634
- A. Căpraru, E.A. Moacă, C. Păcurariu, R. Ianoş, R. Lazău and L. Barbu Tudoran, Powder Technol., 394, 1026 (2021); https://doi.org/10.1016/j.powtec.2021.08.093
- R. Fu, X. Jin, J. Liang, W. Zheng, J. Zhuang and W. Yang, J. Mater. Chem., 21, 15352 (2011); https://doi.org/10.1039/c1jm11883h
- K. Hedayati, M. Goodarzi and D. Ghanbari, J. Nanostruct., 7, 32 (2017); https://doi.org/10.22052/jns.2017.01.004
- N. Kamboj, A. Betal, M. Majumder, S. Sahu and R.K. Metre, Inorg. Chem., 62, 4170 (2023); https://doi.org/10.1021/acs.inorgchem.2c04264
- P. Elayarani, T. Sumathi and G. Sivakumar, J. Mater. Sci. Mater. Electron., 35, 211 (2024); https://doi.org/10.1007/s10854-023-11884-8
- K.P. Hazarika, R. Fopase, L.M. Pandey and J.P. Borah, Physica B, 645, 414237 (2022); https://doi.org/10.1016/j.physb.2022.414237
- T. Munawar, S. Yasmeen, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M.I. Arshad and F. Iqbal, Ceram. Int., 46, 11101 (2020); https://doi.org/10.1016/j.ceramint.2020.01.130
- N. Kadian, R. Kumari, A. Panchal, J. Dalal and D. Padalia, J. Alloys Compd., 960, 170811 (2023); https://doi.org/10.1016/j.jallcom.2023.170811
- S. Xing, Z. Zhou, Z. Ma and Y. Wu, Appl. Catal. B, 107, 386 (2011); https://doi.org/10.1016/j.apcatb.2011.08.002
- S. Kumari, E. Sharma, J. Verma, J. Dalal and A. Kumar, Ceram. Int., 49, 20185 (2023); https://doi.org/10.1016/j.ceramint.2023.03.142
- G. Boopathi, G.G. Karthikeyan, S.M. Jaimohan, A. Pandurangan and A.L.F. de Barros, Phy. Chem. C, 122, 9257 (2018); https://doi.org/10.1021/acs.jpcc.7b11643
- S.V. Ganachari, R. Bhat, R. Deshpande and A. Venkataraman, Recent Res. Sci. Technol., 4, 50 (2012).
- J. Liu, T. Xu, M. Gong, F. Yu and Y. Fu, J. Membr. Sci., 283, 190 (2006); https://doi.org/10.1016/j.memsci.2006.06.027
- J. Jiang and Y.-M. Yang, Mater. Sci. Technol., 25, 415 (2009); https://doi.org/10.1179/174328408X296006
- J.G. Kang, B.K. Min and Y. Sohn, Ceram. Int., 41, 1243 (2015); https://doi.org/10.1016/j.ceramint.2014.09.053
- A.B. Gadkari, T.J. Shinde and P.N. Vasambekar, Mater. Chem. Phys., 114, 505 (2009); https://doi.org/10.1016/j.matchemphys.2008.11.011
- H.G. Cha, M.J. Kang, I.C. Hwang, H. Kim, K.B. Yoon and Y.S. Kang, Chem. Commun., 51, 6407 (2015); https://doi.org/10.1039/C5CC00200A
- A.M. Faramawy, H. Elsayed, H.M. Elsayed, A.A. Sattar, Y.W. Getahun, A.A. El-Gendy and H. Kahil, J. Alloys Compd., 974, 172845 (2024); https://doi.org/10.1016/j.jallcom.2023.172845
- C. Zhang, Q. Wu, X. Ke, Y. Ren, S. Xue, and H. Wang, Solar Energy, 135, 274 (2016); https://doi.org/10.1016/j.solener.2016.06.007
- L.D.S. Yadav, Organic Spectroscopy, Springer Netherlands, Dordrecht (2005).
- S. Khashan, S. Dagher, N. Tit, A. Alazzam and I. Obaidat, Surf. Coat. Tech., 322, 92 (2017); https://doi.org/10.1016/j.surfcoat.2017.05.045
- S.B. Patil, H.S. Bhojya Naik, G. Nagaraju, R. Viswanath and S.K. Rashmi, Eur. Phys. J. Plus, 132, 328 (2017); https://doi.org/10.1140/epjp/i2017-11602-x
- S. Sivakumar and L.N. Prabu, Inorg. Chem. Commun., 147, 110247 (2023); https://doi.org/10.1016/j.inoche.2022.110247
- B.C. Kim, C. Justin Raj, W.-J. Cho, W.-G. Lee, H.T. Jeong and K.H. Yu, J. Alloys Compd., 617, 491 (2014); https://doi.org/10.1016/j.jallcom.2014.08.018
- J. Li, Y. Ren, S. Wang, Z. Ren and J. Yu, Appl. Mater. Today, 3, 63 (2016); https://doi.org/10.1016/j.apmt.2016.03.003
- Y. Xu, Y. Zhang, X. Song and H. Liu, Funct. Mater. Lett., 12, 1950019 (2019); https://doi.org/10.1142/S179360471950019X
References
M.H. Taabodi, T. Niknam, S.M. Sharifhosseini, H.A. Aghajari and S. Shojaeiyan, J. Power Sources, 641, 236832 (2025); https://doi.org/10.1016/j.jpowsour.2025.236832
G. Zubi, R. Dufo-López, M. Carvalho and G. Pasaoglu, Renew. Sustain. Energy Rev., 89, 292 (2018); https://doi.org/10.1016/j.rser.2018.03.002
M. Salado and E. Lizundia, Mater. Today Energy, 28, 101064 (2022); https://doi.org/10.1016/j.mtener.2022.101064
L. Liu, X. Zhang, Y. Liu and X. Gong, ACS Appl. Electron. Mater., 7, 2233 (2025); https://doi.org/10.1021/acsaelm.5c00069
K. Chen, S. Song and D. Xue, J. Mater. Chem. A Mater. Energy Sustain., 3, 2441 (2015); https://doi.org/10.1039/C4TA06989G
K.W. Qiu, H.L. Yan, D.Y. Zhang, Y. Lu, J.B. Cheng, W.Q. Zhao, C.L. Wang, Y.H. Zhang, X.M. Liu, C.W. Cheng and Y.S. Luo, Electrochim. Acta, 141, 248 (2014); https://doi.org/10.1016/j.electacta.2014.07.074
S.H. Kazemi, A. Asghari and M.A. Kiani, Electrochim. Acta, 138, 9 (2014); https://doi.org/10.1016/j.electacta.2014.06.094
J. Xu, L. Gao, J.Y. Cao, W.C. Wang and Z.D. Chen, Electrochim. Acta, 56, 732 (2010); https://doi.org/10.1016/j.electacta.2010.09.092
M. Aghazadeh and M.R. Ganjali, J. Mater. Sci. Mater. Electron., 29, 4981 (2018); https://doi.org/10.1007/s10854-017-8459-0
S.C. Pang, W.H. Khoh and S.F. Chin, J. Mater. Sci., 45, 5598 (2010); https://doi.org/10.1007/s10853-010-4622-1
V.D. Nithya and N.S. Arul, J. Mater. Chem. A Mater. Energy Sustain., 4, 10767 (2016); https://doi.org/10.1039/C6TA02582J
P. Akhtar, M.N. Akhtar, M.A. Baqir, A. Ahmad, M.U. Khallidoon, M. Farhan and M.A. Khan, J. Mater. Sci. Mater. Electron., 32, 7692 (2021); https://doi.org/10.1007/s10854-021-05487-4
H. Mohammadi, E. Nekobahr, J. Akhtari, M. Saeedi, J. Akbari and F. Fathi, Toxicol. Rep., 8, 331 (2021); https://doi.org/10.1016/j.toxrep.2021.01.012
G.H. Chen and H.S. Chen, ACS Appl. Nano Mater., 3, 8858 (2020); https://doi.org/10.1021/acsanm.0c01634
A. Căpraru, E.A. Moacă, C. Păcurariu, R. Ianoş, R. Lazău and L. Barbu Tudoran, Powder Technol., 394, 1026 (2021); https://doi.org/10.1016/j.powtec.2021.08.093
R. Fu, X. Jin, J. Liang, W. Zheng, J. Zhuang and W. Yang, J. Mater. Chem., 21, 15352 (2011); https://doi.org/10.1039/c1jm11883h
K. Hedayati, M. Goodarzi and D. Ghanbari, J. Nanostruct., 7, 32 (2017); https://doi.org/10.22052/jns.2017.01.004
N. Kamboj, A. Betal, M. Majumder, S. Sahu and R.K. Metre, Inorg. Chem., 62, 4170 (2023); https://doi.org/10.1021/acs.inorgchem.2c04264
P. Elayarani, T. Sumathi and G. Sivakumar, J. Mater. Sci. Mater. Electron., 35, 211 (2024); https://doi.org/10.1007/s10854-023-11884-8
K.P. Hazarika, R. Fopase, L.M. Pandey and J.P. Borah, Physica B, 645, 414237 (2022); https://doi.org/10.1016/j.physb.2022.414237
T. Munawar, S. Yasmeen, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M.I. Arshad and F. Iqbal, Ceram. Int., 46, 11101 (2020); https://doi.org/10.1016/j.ceramint.2020.01.130
N. Kadian, R. Kumari, A. Panchal, J. Dalal and D. Padalia, J. Alloys Compd., 960, 170811 (2023); https://doi.org/10.1016/j.jallcom.2023.170811
S. Xing, Z. Zhou, Z. Ma and Y. Wu, Appl. Catal. B, 107, 386 (2011); https://doi.org/10.1016/j.apcatb.2011.08.002
S. Kumari, E. Sharma, J. Verma, J. Dalal and A. Kumar, Ceram. Int., 49, 20185 (2023); https://doi.org/10.1016/j.ceramint.2023.03.142
G. Boopathi, G.G. Karthikeyan, S.M. Jaimohan, A. Pandurangan and A.L.F. de Barros, Phy. Chem. C, 122, 9257 (2018); https://doi.org/10.1021/acs.jpcc.7b11643
S.V. Ganachari, R. Bhat, R. Deshpande and A. Venkataraman, Recent Res. Sci. Technol., 4, 50 (2012).
J. Liu, T. Xu, M. Gong, F. Yu and Y. Fu, J. Membr. Sci., 283, 190 (2006); https://doi.org/10.1016/j.memsci.2006.06.027
J. Jiang and Y.-M. Yang, Mater. Sci. Technol., 25, 415 (2009); https://doi.org/10.1179/174328408X296006
J.G. Kang, B.K. Min and Y. Sohn, Ceram. Int., 41, 1243 (2015); https://doi.org/10.1016/j.ceramint.2014.09.053
A.B. Gadkari, T.J. Shinde and P.N. Vasambekar, Mater. Chem. Phys., 114, 505 (2009); https://doi.org/10.1016/j.matchemphys.2008.11.011
H.G. Cha, M.J. Kang, I.C. Hwang, H. Kim, K.B. Yoon and Y.S. Kang, Chem. Commun., 51, 6407 (2015); https://doi.org/10.1039/C5CC00200A
A.M. Faramawy, H. Elsayed, H.M. Elsayed, A.A. Sattar, Y.W. Getahun, A.A. El-Gendy and H. Kahil, J. Alloys Compd., 974, 172845 (2024); https://doi.org/10.1016/j.jallcom.2023.172845
C. Zhang, Q. Wu, X. Ke, Y. Ren, S. Xue, and H. Wang, Solar Energy, 135, 274 (2016); https://doi.org/10.1016/j.solener.2016.06.007
L.D.S. Yadav, Organic Spectroscopy, Springer Netherlands, Dordrecht (2005).
S. Khashan, S. Dagher, N. Tit, A. Alazzam and I. Obaidat, Surf. Coat. Tech., 322, 92 (2017); https://doi.org/10.1016/j.surfcoat.2017.05.045
S.B. Patil, H.S. Bhojya Naik, G. Nagaraju, R. Viswanath and S.K. Rashmi, Eur. Phys. J. Plus, 132, 328 (2017); https://doi.org/10.1140/epjp/i2017-11602-x
S. Sivakumar and L.N. Prabu, Inorg. Chem. Commun., 147, 110247 (2023); https://doi.org/10.1016/j.inoche.2022.110247
B.C. Kim, C. Justin Raj, W.-J. Cho, W.-G. Lee, H.T. Jeong and K.H. Yu, J. Alloys Compd., 617, 491 (2014); https://doi.org/10.1016/j.jallcom.2014.08.018
J. Li, Y. Ren, S. Wang, Z. Ren and J. Yu, Appl. Mater. Today, 3, 63 (2016); https://doi.org/10.1016/j.apmt.2016.03.003
Y. Xu, Y. Zhang, X. Song and H. Liu, Funct. Mater. Lett., 12, 1950019 (2019); https://doi.org/10.1142/S179360471950019X