Copyright (c) 2025 Selvakumar C, V T Geetha, A Jayanthi, D V Sridevi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhancing Optical and Antioxidant Functionality in Zinc Doped Nickel Sulfide Nanoparticles
Corresponding Author(s) : C. Selvakumar
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
This study focuses on the optical and antioxidant properties of zinc-doped nickel sulfide (Zn–NiS) nanoparticles synthesized via an eco-friendly co-precipitation method, using varying zinc concentrations of 10%, 20% and 30%. In structural analyses using IR, SEM, TEM, and XRD techniques, Zn-NiS nanoparticles exhibited distinct features compared to undoped nickel sulfide (NiS), with EDAX confirming its crystalline organization. At higher Zn doping levels, optical studies based on Tauc equation revealed a redshift in the absorption edge and a reduction in band gap energy, attributed to defect-induced modifications in the electronic structure. Structural and morphological investigations confirmed phase stability (hexagonal) and demonstrated doping-dependent morphological transitions—from rod-like structures to porous clusters. Notably, 30% Zn-doped NiS exhibited approximately 95% inhibition at a concentration of 1000 µg/mL in DPPH radical scavenging assays, highlighting its remarkable antioxidant activity. These findings underscore the dual functional potential of Zn-NiS for sustainable technological applications, particularly in the biomedical field (as antioxidants) and in optoelectronics (via tunable band gaps).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. ElKhamisy, H. Abdelhamid, E.M. El-Rabaie and N. Abdel-Salam, Plasmonics, 19, 1 (2024); https://doi.org/10.1007/s11468-023-01905-x
- X. Wang, Y. Li, B. Zhang and G. Sun, J. Mater. Chem. A, 3, 18922 (2015); https://doi.org/10.1039/C5TA04346C
- S. Kumar, A. Sharma and R. Mehta, ACS Appl. Nano Mater., 6, 6543 (2023); https://doi.org/10.1021/acsanm.3c00471
- J. Younus, W. Shahzad, B. Ismail, T. Fazal, M. Shah, S. Iqbal, A.H. Jawhari, N.S. Awwad and H.A. Ibrahium, RSC Adv., 13, 27415 (2023); https://doi.org/10.1039/D3RA04011A
- K. Patel, H. Joshi and A. Singh, Appl. Sci., 13, 12456 (2023); https://doi.org/10.3390/app132212456
- A. Batool, A. Azizullah, K. Ullah, S. Shad, F.U. Khan, M.F. Seleiman, T. Aziz and U. Zeb, BMC Plant Biol., 24, 820 (2024); https://doi.org/10.1186/s12870-024-05525-3
- C. Selvakumar and M. Deepa, Indian J. Chem. Technol., 27, 9 (2020).
- A. Yadav, P. Sharma and R. Singh, Polym. Rev., 62, 765 (2022); https://doi.org/10.1080/15583724.2021.2014517
- L. Wang, H. Zhou and Y. Li, Nanoscale Adv., 5, 789 (2023); https://doi.org/10.1039/D2NA00834F
- C. Selvakumar, V.T. Geetha, S. Sathiyamoorthi and R. Sharan, J. Nonlinear Opt. Phys. Mater., 34, 2450037 (2025); https://doi.org/10.1142/S0218863524500371
- J. Gong, X. Wang, H. W, X. Dong, J. Li, F. Yang, A. Yuan and H. Ji, Appl. Surf. Sci., 605, 154702 (2022); https://doi.org/10.1016/j.apsusc.2022.154702
- L. Kumaresan, C. Selvakumar, G. Shanmugavelayutham and K. Jayasankar, New J. Chem., 47, 17080 (2023); https://doi.org/10.1039/D3NJ02526H
- H. Ali, N. Ahmed and S. Khan, Environ. Sci. Nano, 10, 1123 (2023); https://doi.org/10.1039/D2EN01122A
- Y. Xue, J. Xiao, K. Li, H. Gu, Q. Lu and Y. Pang, J. Nanopart. Res., 23, 265 (2021); https://doi.org/10.1007/s11051-021-05379-y
- C. Selvakumar and M. Deepa, Int. J. Chemtech Res., 7, 2675 (2010).
- Q. Li, Z. Feng and Y. Liu, Adv. Energy Mater., 12, 2201234 (2022); https://doi.org/10.1002/aenm.202201234
- M. Avateffazeli, S.I. Shakil, H. Pirgazi, B. Shalchi-Amirkhiz, M. Mohammadi and M. Haghshenas, Mater. Today Commun., 36, 106581 (2023); https://doi.org/10.1016/j.mtcomm.2023.106581
- M. Kasaeian-Naeini, M. Sedighi, R. Hashemi and H. Delavar, Ceram. Int., 49, 16981 (2023); https://doi.org/10.1016/j.ceramint.2023.02.069
- J. Lee, Vib. Spectrosc., 123, 103456 (2022); https://doi.org/10.1016/j.vibspec.2022.103456
- I. Arnay, A. Serrano, V. Braza, R. Cid, A.M. Sánchez, J. López-Sánchez, G.R. Castro and J. Rubio-Zuazo, J. Alloys Compd., 947, 169540 (2023); https://doi.org/10.1016/j.jallcom.2023.169540
- V. Blanchet, D. Descamps, S. Petit, Y. Mairesse, B. Pons and B. Fabre, Phys. Chem. Chem. Phys., 23, 25612 (2021); https://doi.org/10.1039/D1CP03569J
- Y. Fang, L. Zhang and J. Liu, Biomater. Sci., 11, 1532 (2023); https://doi.org/10.1039/D2BM01987C
- V. Tiwari, S. Gupta and M. Kumar, Free Radic. Res., 57, 245 (2023); https://doi.org/10.1080/10715762.2023.2194428
- H. Lu, Q. Wang, J. Chen, H. Zhang, J. Ding, Y. Nuli, J. Yang and J. Wang, Energy Storage Mater., 63, 102944 (2023); https://doi.org/10.1016/j.ensm.2023.102994
- L. Wagner, B. Kenzhebayeva, B. Dhaini, S. Boukhlef, A. Moussaron, S. Mordon, C. Frochot, C. Collet and S. Acherar, Coord. Chem. Rev., 470, 214702 (2022); https://doi.org/10.1016/j.ccr.2022.214702
- Y. Zhang, L. Liu and M. Chen, J. Mater. Chem. B Mater. Biol. Med., 10, 1892 (2022); https://doi.org/10.1039/D1TB02563E
References
K. ElKhamisy, H. Abdelhamid, E.M. El-Rabaie and N. Abdel-Salam, Plasmonics, 19, 1 (2024); https://doi.org/10.1007/s11468-023-01905-x
X. Wang, Y. Li, B. Zhang and G. Sun, J. Mater. Chem. A, 3, 18922 (2015); https://doi.org/10.1039/C5TA04346C
S. Kumar, A. Sharma and R. Mehta, ACS Appl. Nano Mater., 6, 6543 (2023); https://doi.org/10.1021/acsanm.3c00471
J. Younus, W. Shahzad, B. Ismail, T. Fazal, M. Shah, S. Iqbal, A.H. Jawhari, N.S. Awwad and H.A. Ibrahium, RSC Adv., 13, 27415 (2023); https://doi.org/10.1039/D3RA04011A
K. Patel, H. Joshi and A. Singh, Appl. Sci., 13, 12456 (2023); https://doi.org/10.3390/app132212456
A. Batool, A. Azizullah, K. Ullah, S. Shad, F.U. Khan, M.F. Seleiman, T. Aziz and U. Zeb, BMC Plant Biol., 24, 820 (2024); https://doi.org/10.1186/s12870-024-05525-3
C. Selvakumar and M. Deepa, Indian J. Chem. Technol., 27, 9 (2020).
A. Yadav, P. Sharma and R. Singh, Polym. Rev., 62, 765 (2022); https://doi.org/10.1080/15583724.2021.2014517
L. Wang, H. Zhou and Y. Li, Nanoscale Adv., 5, 789 (2023); https://doi.org/10.1039/D2NA00834F
C. Selvakumar, V.T. Geetha, S. Sathiyamoorthi and R. Sharan, J. Nonlinear Opt. Phys. Mater., 34, 2450037 (2025); https://doi.org/10.1142/S0218863524500371
J. Gong, X. Wang, H. W, X. Dong, J. Li, F. Yang, A. Yuan and H. Ji, Appl. Surf. Sci., 605, 154702 (2022); https://doi.org/10.1016/j.apsusc.2022.154702
L. Kumaresan, C. Selvakumar, G. Shanmugavelayutham and K. Jayasankar, New J. Chem., 47, 17080 (2023); https://doi.org/10.1039/D3NJ02526H
H. Ali, N. Ahmed and S. Khan, Environ. Sci. Nano, 10, 1123 (2023); https://doi.org/10.1039/D2EN01122A
Y. Xue, J. Xiao, K. Li, H. Gu, Q. Lu and Y. Pang, J. Nanopart. Res., 23, 265 (2021); https://doi.org/10.1007/s11051-021-05379-y
C. Selvakumar and M. Deepa, Int. J. Chemtech Res., 7, 2675 (2010).
Q. Li, Z. Feng and Y. Liu, Adv. Energy Mater., 12, 2201234 (2022); https://doi.org/10.1002/aenm.202201234
M. Avateffazeli, S.I. Shakil, H. Pirgazi, B. Shalchi-Amirkhiz, M. Mohammadi and M. Haghshenas, Mater. Today Commun., 36, 106581 (2023); https://doi.org/10.1016/j.mtcomm.2023.106581
M. Kasaeian-Naeini, M. Sedighi, R. Hashemi and H. Delavar, Ceram. Int., 49, 16981 (2023); https://doi.org/10.1016/j.ceramint.2023.02.069
J. Lee, Vib. Spectrosc., 123, 103456 (2022); https://doi.org/10.1016/j.vibspec.2022.103456
I. Arnay, A. Serrano, V. Braza, R. Cid, A.M. Sánchez, J. López-Sánchez, G.R. Castro and J. Rubio-Zuazo, J. Alloys Compd., 947, 169540 (2023); https://doi.org/10.1016/j.jallcom.2023.169540
V. Blanchet, D. Descamps, S. Petit, Y. Mairesse, B. Pons and B. Fabre, Phys. Chem. Chem. Phys., 23, 25612 (2021); https://doi.org/10.1039/D1CP03569J
Y. Fang, L. Zhang and J. Liu, Biomater. Sci., 11, 1532 (2023); https://doi.org/10.1039/D2BM01987C
V. Tiwari, S. Gupta and M. Kumar, Free Radic. Res., 57, 245 (2023); https://doi.org/10.1080/10715762.2023.2194428
H. Lu, Q. Wang, J. Chen, H. Zhang, J. Ding, Y. Nuli, J. Yang and J. Wang, Energy Storage Mater., 63, 102944 (2023); https://doi.org/10.1016/j.ensm.2023.102994
L. Wagner, B. Kenzhebayeva, B. Dhaini, S. Boukhlef, A. Moussaron, S. Mordon, C. Frochot, C. Collet and S. Acherar, Coord. Chem. Rev., 470, 214702 (2022); https://doi.org/10.1016/j.ccr.2022.214702
Y. Zhang, L. Liu and M. Chen, J. Mater. Chem. B Mater. Biol. Med., 10, 1892 (2022); https://doi.org/10.1039/D1TB02563E