Copyright (c) 2025 Dr Subhas S. Karki, Arnav Kumar, Basavaraj Metikurki, Arnika Das, Ashok Madarakhandi, Sujeet Kumar, Dominique Schols

This work is licensed under a Creative Commons Attribution 4.0 International License.
1,4-Disubstituted-1,2,3-triazole Linked Cyclic Ketones as Cytotoxic Agents
Corresponding Author(s) : Subhas S. Karki
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
A series of 1,2,3-triazole-linked cyclic ketones (AR 1-14) were synthesized involving the condensation of triazole-aldehydes with cyclic ketones in tetrahydrofuran and potassium hydroxide. The synthesized derivatives were evaluated for their in vitro cytotoxicity against retinal (hTERT RPE-1)-1), pancreatic (Capan-1), myeloid (K-562, Hap-1), colorectal (HCT 116), lung (NCI-H460), lymphoblastic (DND-41) and non-Hodgkin lymphoma (Z-138) cells. Among the tested derivatives, compound 2,6-bis(4-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)-methoxy)benzylidene)cyclohexanone (AR-7) exhibited moderate cytotoxic property with an IC50 of 11.8 µM and 13.6 µM against pancreatic adenocarcinoma and colorectal carcinoma cells, respectively. Molecular docking against galectin-1 receptor (PDB ID: 4Y24) demonstrated a favourable binding interaction (-7.1 kcal/mol) indicating a strong receptor-ligand affinity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Sathishkumar, M. Chaturvedi, P. Das, S. Stephen and P. Mathur, Indian J. Med. Res., 156, 598 (2022); https://doi.org/10.4103/ijmr.ijmr_1821_22
- A. Kumar, A.K. Singh, H. Singh, V. Vijayan, D. Kumar, S. Thareja, J.P. Yadav, J. Naik, P. Pathak, M. Grishina, A. Verma, H. Khalilullah, M. Jaremko, A.H. Emwas and P. Kumar, Pharmaceuticals, 16, 299 (2023); https://doi.org/10.3390/ph16020299
- D.P. Vala, R.M. Vala and H.M. Patel, ACS Omega, 7, 36945 (2022); https://doi.org/10.1021/acsomega.2c04883
- M.S. Malik, S.A. Ahmed, I.I. Althagafi, M.A. Ansari and A. Kamal, RSC Med. Chem., 11, 327 (2020); https://doi.org/10.1039/C9MD00458K
- L. Johannes, R. Jacob and H. Leffler, J. Cell Sci., 131, 208884 (2018); https://doi.org/10.1242/jcs.208884
- I. Camby, M. Le Mercier, F. Lefranc and R. Kiss, Glycobiology, 16, 137R (2006); https://doi.org/10.1093/glycob/cwl025
- F. Cedeno-Laurent and C.J. Dimitroff, Clin. Immunol., 142, 107 (2012); https://doi.org/10.1016/j.clim.2011.09.011
- G. Rabinovich, Br. J. Cancer, 92, 1188 (2005); https://doi.org/10.1038/sj.bjc.6602493
- G. Emilsson, E. Röder, B. Malekian, K. Xiong, J. Manzi, F.-C. Tsai, N.-J. Cho, M. Bally and A. Dahlin, Front Chem., 7, 1 (2019); https://doi.org/10.3389/fchem.2019.00001
- S.G. Nerella, Eur. J. Med. Chem. Rep., 11, 100170 (2024); https://doi.org/10.1016/j.ejmcr.2024.100170
- J.M. Cousin and M.J. Cloninger, Int. J. Mol. Sci., 17, 1566 (2016); https://doi.org/10.3390/ijms17091566
- Y. Huang, H.C. Wang, J. Zhao, M.H. Wu and T.C. Shih, Biomolecules, 11, 1398 (2021); https://doi.org/10.3390/biom11101398
- A. Das, G. Greco, S. Kumar, E. Catanzaro, R. Morigi, A. Locatelli, D. Schols, H. Alici, H. Tahtaci, F. Ravindran, C. Fimognari and S.S. Karki, Comput. Biol. Chem., 97, 107641 (2022); https://doi.org/10.1016/j.compbiolchem.2022.107641
- T. Van de Walle, A. Theppawong, C. Grootaert, S. De Jonghe, L. Persoons, D. Daelemans, K. Van Hecke, J. Van Camp and M. D’hooghe, Monatsh. Chem., 150, 2045 (2019); https://doi.org/10.1007/s00706-019-02516-1
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
References
K. Sathishkumar, M. Chaturvedi, P. Das, S. Stephen and P. Mathur, Indian J. Med. Res., 156, 598 (2022); https://doi.org/10.4103/ijmr.ijmr_1821_22
A. Kumar, A.K. Singh, H. Singh, V. Vijayan, D. Kumar, S. Thareja, J.P. Yadav, J. Naik, P. Pathak, M. Grishina, A. Verma, H. Khalilullah, M. Jaremko, A.H. Emwas and P. Kumar, Pharmaceuticals, 16, 299 (2023); https://doi.org/10.3390/ph16020299
D.P. Vala, R.M. Vala and H.M. Patel, ACS Omega, 7, 36945 (2022); https://doi.org/10.1021/acsomega.2c04883
M.S. Malik, S.A. Ahmed, I.I. Althagafi, M.A. Ansari and A. Kamal, RSC Med. Chem., 11, 327 (2020); https://doi.org/10.1039/C9MD00458K
L. Johannes, R. Jacob and H. Leffler, J. Cell Sci., 131, 208884 (2018); https://doi.org/10.1242/jcs.208884
I. Camby, M. Le Mercier, F. Lefranc and R. Kiss, Glycobiology, 16, 137R (2006); https://doi.org/10.1093/glycob/cwl025
F. Cedeno-Laurent and C.J. Dimitroff, Clin. Immunol., 142, 107 (2012); https://doi.org/10.1016/j.clim.2011.09.011
G. Rabinovich, Br. J. Cancer, 92, 1188 (2005); https://doi.org/10.1038/sj.bjc.6602493
G. Emilsson, E. Röder, B. Malekian, K. Xiong, J. Manzi, F.-C. Tsai, N.-J. Cho, M. Bally and A. Dahlin, Front Chem., 7, 1 (2019); https://doi.org/10.3389/fchem.2019.00001
S.G. Nerella, Eur. J. Med. Chem. Rep., 11, 100170 (2024); https://doi.org/10.1016/j.ejmcr.2024.100170
J.M. Cousin and M.J. Cloninger, Int. J. Mol. Sci., 17, 1566 (2016); https://doi.org/10.3390/ijms17091566
Y. Huang, H.C. Wang, J. Zhao, M.H. Wu and T.C. Shih, Biomolecules, 11, 1398 (2021); https://doi.org/10.3390/biom11101398
A. Das, G. Greco, S. Kumar, E. Catanzaro, R. Morigi, A. Locatelli, D. Schols, H. Alici, H. Tahtaci, F. Ravindran, C. Fimognari and S.S. Karki, Comput. Biol. Chem., 97, 107641 (2022); https://doi.org/10.1016/j.compbiolchem.2022.107641
T. Van de Walle, A. Theppawong, C. Grootaert, S. De Jonghe, L. Persoons, D. Daelemans, K. Van Hecke, J. Van Camp and M. D’hooghe, Monatsh. Chem., 150, 2045 (2019); https://doi.org/10.1007/s00706-019-02516-1
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334