Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study to Predict the Ability to Use Different Organic Substituents as Carrier Linkages for Diclofenac
Corresponding Author(s) : Rehab Majed Kubba
Asian Journal of Chemistry,
Vol. 33 No. 9 (2021): Vol 33 Issue 9, 2021
Abstract
The research includes unrestricted (UDFT) and (UPM3) quantum mechanical calculations for studying the reaction path of bonds rupture energies of (O-R) and (C-OAr) in twelve diclofenac derivatives containing different substituted organic groups. All the calculations were performed at the optimize geometries in vacuum phase by using Gaussian 09 program. Comparison was done between the studied diclofenac derivatives and the standard ionic diclofenac of sodium and potassium included geometrical structures, physical properties, total energies of the reactants and products, activation energies and transition states. The results showed that some substituted organic groups could be used to form good carrier bonds for the acidic drug diclofenac, while others were less efficient depending on the nature of the substituted carrier, and that there is a preference for carriers of the type (–R) over the carriers of the type (–Ar).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.K. Kiriiri, P.M. Njogu and A.N. Mwangi, Futur. J. Pharm. Sci., 6, 27 (2020); https://doi.org/10.1186/s43094-020-00047-9
- J. Rautio, N.A. Meanwell, L. Di and M.J. Hageman, Nat. Rev. Drug Discov., 17, 559 (2018); https://doi.org/10.1038/nrd.2018.46
- P.M. Gandhi, A.R. Chabukswar and S.C. Jagdale, Indian J. Pharm. Sci., 81, 406 (2019); https://doi.org/10.36468/pharmaceutical-sciences.524
- C.G. Wermuth, C.R. Ganellin, P. Lindberg and L.A. Mitscher, Pure Appl. Chem., 70, 1129 (1998); https://doi.org/10.1351/pac199870051129
- K.D. Tripathi, Essentials of Medical Pharmacology, Jaypee Brothers Medical Publishers (P), Ltd.: New Delhi, Ed. 7, p. 25 (2013).
- D.H. Jornada, G.F. dos Santos Fernandes, D.E. Chiba, T.R.F. de Melo, J.L. dos Santos and M.C. Chung, Molecules, 21, 42 (2016); https://doi.org/10.3390/molecules21010042
- A. Najjar and R. Karaman, Expert Opin. Drug Deliv., 16, 1 (2019); https://doi.org/10.1080/17425247.2019.1553954
- H. Hejaz, R. Karaman and M. Khamis, J. Mol. Model., 18, 103 (2012); https://doi.org/10.1007/s00894-011-1040-5
- R. Karaman, Chem. Biol. Drug Des., 82, 463 (2013); https://doi.org/10.1111/cbdd.12224
- R. Altman, B. Bosch, K. Brune, P. Patrignani and C. Young, Drugs, 75, 859 (2015); https://doi.org/10.1007/s40265-015-0392-z
- L. Ribeiro, N. Silva, J. Iley, J. Rautio, T. Järvinen, H. Mota-Filipe, R. Moreira and E. Mendes, Arch. Pharm. Chem. Life Sci., 340, 32 (2007); https://doi.org/10.1002/ardp.200600145
- S. Kumar, D.K. Tyagi and A. Gupta, J. Pharm. Sci. Res., 2, 369 (2010).
- W. Horani, A. Thawabteh, L. Scrano, S.A. Bufo, G. Mecca and R. Karaman, World J. Pharm. Pharmaceut. Sci., 4, 1960 (2015).
- N. Bhardwaj, Ph.D Thesis, Analytical Method Development and Validation of Newly Synthesized Ester Prodrugs of Aceclofenac, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India (2014).
- G.P. Jalpa and J.S. Dhrubo, World J. Pharm. Pharmaceut. Sci., 5, 897 (2016).
- M. Lepšík, J. Rezác, M. Kolár, A. Pecina, P. Hobza and J. Fanfrlík, ChemPlusChem, 78, 921 (2013); https://doi.org/10.1002/cplu.201300199
- R.M. Kubba and T.M. Al-Mouamin, Anb J. Pure Sci., 6, 90 (2012).
- R.M. Kubba, Asian J. Chem., 30, 1291 (2018); https://doi.org/10.14233/ajchem.2018.21225
- M.M. Kadhim and R.M. Kubba, Iraq J. Sci., 61, 936 (2020); https://doi.org/10.24996/ijs.2020.61.5.1
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
- O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT (2009).
- M. Mirzaei, S.H. Kazemi, H. Eshtiagh-Hosseini and M. Izadyar, Phys. Chem. Res., 1, 117 (2013); https://doi.org/10.22036/PCR.2013.3102
- V. Reiner, A. Reiner, G. Reiner and M. Conti, Arzneimittelforschung, 51, 885 (2001); https://doi.org/10.1055/s-0031-1300132
- R. Karaman, J. Comput. Mol. Des., 24, 961 (2010); https://doi.org/10.1007/s10822-010-9389-6
- F. Wang, J. Finnin, C. Tait, S. Quirk, I. Chekhtman, A.C. Donohue, S. Ng, A. D’Souza, R. Tait and R. Prankerd, J. Pharm. Sci., 105, 773 (2016); https://doi.org/10.1002/jps.24665
References
G.K. Kiriiri, P.M. Njogu and A.N. Mwangi, Futur. J. Pharm. Sci., 6, 27 (2020); https://doi.org/10.1186/s43094-020-00047-9
J. Rautio, N.A. Meanwell, L. Di and M.J. Hageman, Nat. Rev. Drug Discov., 17, 559 (2018); https://doi.org/10.1038/nrd.2018.46
P.M. Gandhi, A.R. Chabukswar and S.C. Jagdale, Indian J. Pharm. Sci., 81, 406 (2019); https://doi.org/10.36468/pharmaceutical-sciences.524
C.G. Wermuth, C.R. Ganellin, P. Lindberg and L.A. Mitscher, Pure Appl. Chem., 70, 1129 (1998); https://doi.org/10.1351/pac199870051129
K.D. Tripathi, Essentials of Medical Pharmacology, Jaypee Brothers Medical Publishers (P), Ltd.: New Delhi, Ed. 7, p. 25 (2013).
D.H. Jornada, G.F. dos Santos Fernandes, D.E. Chiba, T.R.F. de Melo, J.L. dos Santos and M.C. Chung, Molecules, 21, 42 (2016); https://doi.org/10.3390/molecules21010042
A. Najjar and R. Karaman, Expert Opin. Drug Deliv., 16, 1 (2019); https://doi.org/10.1080/17425247.2019.1553954
H. Hejaz, R. Karaman and M. Khamis, J. Mol. Model., 18, 103 (2012); https://doi.org/10.1007/s00894-011-1040-5
R. Karaman, Chem. Biol. Drug Des., 82, 463 (2013); https://doi.org/10.1111/cbdd.12224
R. Altman, B. Bosch, K. Brune, P. Patrignani and C. Young, Drugs, 75, 859 (2015); https://doi.org/10.1007/s40265-015-0392-z
L. Ribeiro, N. Silva, J. Iley, J. Rautio, T. Järvinen, H. Mota-Filipe, R. Moreira and E. Mendes, Arch. Pharm. Chem. Life Sci., 340, 32 (2007); https://doi.org/10.1002/ardp.200600145
S. Kumar, D.K. Tyagi and A. Gupta, J. Pharm. Sci. Res., 2, 369 (2010).
W. Horani, A. Thawabteh, L. Scrano, S.A. Bufo, G. Mecca and R. Karaman, World J. Pharm. Pharmaceut. Sci., 4, 1960 (2015).
N. Bhardwaj, Ph.D Thesis, Analytical Method Development and Validation of Newly Synthesized Ester Prodrugs of Aceclofenac, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India (2014).
G.P. Jalpa and J.S. Dhrubo, World J. Pharm. Pharmaceut. Sci., 5, 897 (2016).
M. Lepšík, J. Rezác, M. Kolár, A. Pecina, P. Hobza and J. Fanfrlík, ChemPlusChem, 78, 921 (2013); https://doi.org/10.1002/cplu.201300199
R.M. Kubba and T.M. Al-Mouamin, Anb J. Pure Sci., 6, 90 (2012).
R.M. Kubba, Asian J. Chem., 30, 1291 (2018); https://doi.org/10.14233/ajchem.2018.21225
M.M. Kadhim and R.M. Kubba, Iraq J. Sci., 61, 936 (2020); https://doi.org/10.24996/ijs.2020.61.5.1
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT (2009).
M. Mirzaei, S.H. Kazemi, H. Eshtiagh-Hosseini and M. Izadyar, Phys. Chem. Res., 1, 117 (2013); https://doi.org/10.22036/PCR.2013.3102
V. Reiner, A. Reiner, G. Reiner and M. Conti, Arzneimittelforschung, 51, 885 (2001); https://doi.org/10.1055/s-0031-1300132
R. Karaman, J. Comput. Mol. Des., 24, 961 (2010); https://doi.org/10.1007/s10822-010-9389-6
F. Wang, J. Finnin, C. Tait, S. Quirk, I. Chekhtman, A.C. Donohue, S. Ng, A. D’Souza, R. Tait and R. Prankerd, J. Pharm. Sci., 105, 773 (2016); https://doi.org/10.1002/jps.24665