Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Role of Cationic and Anionic Dopants on the Structural, Morphological, Optical and Magnetic Properties of Lead Oxide Nanocrystals Prepared by Solvothermal Method
Corresponding Author(s) : K.J. Abhirama
Asian Journal of Chemistry,
Vol. 33 No. 9 (2021): Vol 33 Issue 9, 2021
Abstract
A facile and simple microwave assisted solvothermal technique was adopted for the synthesis of undoped and doped (Mn2+, S2–) lead oxide nanoparticles. Thermogravimetric analysis and differential thermal analysis were carried out to realize the thermal behaviour of PbO nanoparticles. The synthesized nanoparticles were annealed at about 400 ºC. The calcined samples were characterized by powder X-ray diffraction, SEM, EDX, UV spectroscopic analysis and VSM measurement. The diffraction patterns of the prepared nanoparticles showed the formation of an orthorhombic phase of lead oxide. All the samples were in nano- regime with an average grain size of 22-26 nm. Spherical morphology of the samples was revealed in the SEM micrographs. EDX pattern confirmed the presence of cationic and anionic dopants. The band gap energy values range from 4.2 to 5.6 eV. The VSM measurement revealed that the sample has weak ferromagnetic nature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Rastogi, M. Zivcak, O. Sytar, H.M. Kalaji, X. He, S. Mbarki and M. Brestic, Front. Chem., 5, 78 (2017); https://doi.org/10.3389/fchem.2017.00078
- M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
- J.K. Hedlund Orbeck and R.J. Hamers, J. Vacuum Sci. Technol. A, 38, 031001 (2020); https://doi.org/10.1116/1.5141853
- A.M. Abu-Dief, J. Nanotechnol. Nanomater., 1, 5 (2020).
- J.A. Rodriguez and M. Fernandez-Garcia, Synthesis, Properties and Applications of Oxide Nanoparticles, Wiley: New Jersey (2007).
- M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson and J.A. Rodriguez, Chem. Rev., 104, 4063 (2004); https://doi.org/10.1021/cr030032f
- R. Medhi, M.D. Marquez, and T.R. Lee, ACS Appl. Nano Mater., 3, 6156 (2020); https://doi.org/10.1021/acsanm.0c01035
- N. Millot, D. Aymes, F. Bernard, J.C. Niepce, A. Traverse, F. Bouree, B.L. Cheng and P. Perriat, J. Phys. Chem. B, 107, 5740 (2003); https://doi.org/10.1021/jp022312p
- J. Schoiswohl, G. Kresse, S. Surnev, M. Sock, M.G. Ramsey and F.P. Netzer, Phys. Rev. Lett., 92, 206103 (2004); https://doi.org/10.1103/PhysRevLett.92.206103
- J.M. McHale, A. Auroux, A.J. Perrota and A. Navrotsky, Science, 277, 788 (1997); https://doi.org/10.1126/science.277.5327.788
- H. Zhang and J.F. Banfield, J. Mater. Chem., 8, 2073 (1998); https://doi.org/10.1039/a802619j
- O.A. Oyewo, E.E. Elemike, D.C. Onwudiwe and M.S. Onyango, Int. J. Biol. Macromol., 164, 2477 (2020); https://doi.org/10.1016/j.ijbiomac.2020.08.074
- S. Varzdar, L. Hashemi, A. Morsali and M. Dusek, J. Iran. Chem. Soc., 14, 2255 (2017); https://doi.org/10.1007/s13738-017-1162-5
- P. Veluchamy, M. Sharon, M. Shimizu and H. Minoura, J. Electroanal.Chem., 365, 179 (1994); https://doi.org/10.1016/0022-0728(93)02973-L
- S. Ghasemi, M.F. Mousavi, M. Shamsipur and H. Karami, Ultrason. Sonochem., 15, 448 (2008); https://doi.org/10.1016/j.ultsonch.2007.05.006
- A. Miri, M. Sarani, A. Hashemzadeh, Z. Mardani and M. Darroud, Green Chem. Lett. Rev., 11, 567 (2018); https://doi.org/10.1080/17518253.2018.1547926
- B. Jia and L. Gao, Mater. Chem. Phys., 100, 351 (2006); https://doi.org/10.1016/j.matchemphys.2006.01.012
- S. Li, W. Yang, M. Chen, J. Gao, J. Kang and Y. Qi, Mater. Chem. Phys., 90, 262 (2005); https://doi.org/10.1016/j.matchemphys.2004.02.022
- L.J. Chen, S.M. Zhang, Z.S. Wu, Z.J. Zhang and H.X. Dang, Mater. Lett., 59, 3119 (2005); https://doi.org/10.1016/j.matlet.2005.05.031
- F.G. Ma, Z.Q. Shao, L.Y. Song and H.M. Tan, Chin. J. Synth. Chem. (Hecheng Huaxue), 9, 449 (2001).
- Z.W. Pan, Z.R. Dai and Z.L. Wang, Appl. Phys. Lett., 80, 309 (2002); https://doi.org/10.1063/1.1432749
- M. Ghaedi, A.M. Ghaedi, B. Mirtamizdoust, S. Agarwal and V.K. Gupta, J. Mol. Liq., 213, 48 (2016); https://doi.org/10.1016/j.molliq.2015.09.051
- K.H.H. Al-Attiyah, A. Hashim and S.F. Obaid, Int. J. Plast. Technol., 23, 39 (2019); https://doi.org/10.1007/s12588-019-09228-5
- L. Zhan, X. Xiang, B. Xie and B. Gao, Powder Technol., 308, 30 (2017); https://doi.org/10.1016/j.powtec.2016.12.005
- S.G. Rejith and G. Sudha, Int. Adv. Res. J. Sci. Eng. Technol., 4, 130 (2017); https://doi.org/10.17148/IARJSET.2017.4230
- P.B. Taunk, R. Das, D.P. Bisen and R. Tamrakar, Optik, 127, 6028 (2016); https://doi.org/10.1016/j.ijleo.2016.04.073
- M. Salavati-Niasari, F. Mohandes and F. Davar, Polyhedron, 28, 2263 (2009); https://doi.org/10.1016/j.poly.2009.04.009
- A. Ramazani, S. Hamidi and A. Morsali, J. Mol. Liq., 157, 73 (2010); https://doi.org/10.1016/j.molliq.2010.08.012
- V.S. Kundu, R.L. Dhiman, D. Singh, A.S. Maan and S. Arora, Int. J. Adv. Res. Sci. Eng., 2, 5 (2013).
- R.S. Dongre, eds.: P. Chooto, Lead: Toxicological Profile, Pollution Aspects and Remedial Solutions, In: Lead Chemistry, IntechOpen (2020).
- R. Thielsch, T. Bohme, R. Reiche, D. Schlafer, H.D. Bauer and H. Bottcher, Nano Struct. Mater., 10, 131 (1998); https://doi.org/10.1016/S0965-9773(98)00056-7
- T.J. Wilkinson, D.L. Perry, E. Spiller, P. Berdahl, S.E. Derenzo and M.J. Weber, Proc. MRS, 704, 117 (2002).
- P. Tyagi and A.G. Vedeshwar, Bull. Mater. Sci., 24, 297 (2001); https://doi.org/10.1007/BF02704925
- D. Chu, Y. Zeng and D. Jiang, Solid State Commun., 143, 308 (2007); https://doi.org/10.1016/j.ssc.2007.05.036
References
A. Rastogi, M. Zivcak, O. Sytar, H.M. Kalaji, X. He, S. Mbarki and M. Brestic, Front. Chem., 5, 78 (2017); https://doi.org/10.3389/fchem.2017.00078
M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
J.K. Hedlund Orbeck and R.J. Hamers, J. Vacuum Sci. Technol. A, 38, 031001 (2020); https://doi.org/10.1116/1.5141853
A.M. Abu-Dief, J. Nanotechnol. Nanomater., 1, 5 (2020).
J.A. Rodriguez and M. Fernandez-Garcia, Synthesis, Properties and Applications of Oxide Nanoparticles, Wiley: New Jersey (2007).
M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson and J.A. Rodriguez, Chem. Rev., 104, 4063 (2004); https://doi.org/10.1021/cr030032f
R. Medhi, M.D. Marquez, and T.R. Lee, ACS Appl. Nano Mater., 3, 6156 (2020); https://doi.org/10.1021/acsanm.0c01035
N. Millot, D. Aymes, F. Bernard, J.C. Niepce, A. Traverse, F. Bouree, B.L. Cheng and P. Perriat, J. Phys. Chem. B, 107, 5740 (2003); https://doi.org/10.1021/jp022312p
J. Schoiswohl, G. Kresse, S. Surnev, M. Sock, M.G. Ramsey and F.P. Netzer, Phys. Rev. Lett., 92, 206103 (2004); https://doi.org/10.1103/PhysRevLett.92.206103
J.M. McHale, A. Auroux, A.J. Perrota and A. Navrotsky, Science, 277, 788 (1997); https://doi.org/10.1126/science.277.5327.788
H. Zhang and J.F. Banfield, J. Mater. Chem., 8, 2073 (1998); https://doi.org/10.1039/a802619j
O.A. Oyewo, E.E. Elemike, D.C. Onwudiwe and M.S. Onyango, Int. J. Biol. Macromol., 164, 2477 (2020); https://doi.org/10.1016/j.ijbiomac.2020.08.074
S. Varzdar, L. Hashemi, A. Morsali and M. Dusek, J. Iran. Chem. Soc., 14, 2255 (2017); https://doi.org/10.1007/s13738-017-1162-5
P. Veluchamy, M. Sharon, M. Shimizu and H. Minoura, J. Electroanal.Chem., 365, 179 (1994); https://doi.org/10.1016/0022-0728(93)02973-L
S. Ghasemi, M.F. Mousavi, M. Shamsipur and H. Karami, Ultrason. Sonochem., 15, 448 (2008); https://doi.org/10.1016/j.ultsonch.2007.05.006
A. Miri, M. Sarani, A. Hashemzadeh, Z. Mardani and M. Darroud, Green Chem. Lett. Rev., 11, 567 (2018); https://doi.org/10.1080/17518253.2018.1547926
B. Jia and L. Gao, Mater. Chem. Phys., 100, 351 (2006); https://doi.org/10.1016/j.matchemphys.2006.01.012
S. Li, W. Yang, M. Chen, J. Gao, J. Kang and Y. Qi, Mater. Chem. Phys., 90, 262 (2005); https://doi.org/10.1016/j.matchemphys.2004.02.022
L.J. Chen, S.M. Zhang, Z.S. Wu, Z.J. Zhang and H.X. Dang, Mater. Lett., 59, 3119 (2005); https://doi.org/10.1016/j.matlet.2005.05.031
F.G. Ma, Z.Q. Shao, L.Y. Song and H.M. Tan, Chin. J. Synth. Chem. (Hecheng Huaxue), 9, 449 (2001).
Z.W. Pan, Z.R. Dai and Z.L. Wang, Appl. Phys. Lett., 80, 309 (2002); https://doi.org/10.1063/1.1432749
M. Ghaedi, A.M. Ghaedi, B. Mirtamizdoust, S. Agarwal and V.K. Gupta, J. Mol. Liq., 213, 48 (2016); https://doi.org/10.1016/j.molliq.2015.09.051
K.H.H. Al-Attiyah, A. Hashim and S.F. Obaid, Int. J. Plast. Technol., 23, 39 (2019); https://doi.org/10.1007/s12588-019-09228-5
L. Zhan, X. Xiang, B. Xie and B. Gao, Powder Technol., 308, 30 (2017); https://doi.org/10.1016/j.powtec.2016.12.005
S.G. Rejith and G. Sudha, Int. Adv. Res. J. Sci. Eng. Technol., 4, 130 (2017); https://doi.org/10.17148/IARJSET.2017.4230
P.B. Taunk, R. Das, D.P. Bisen and R. Tamrakar, Optik, 127, 6028 (2016); https://doi.org/10.1016/j.ijleo.2016.04.073
M. Salavati-Niasari, F. Mohandes and F. Davar, Polyhedron, 28, 2263 (2009); https://doi.org/10.1016/j.poly.2009.04.009
A. Ramazani, S. Hamidi and A. Morsali, J. Mol. Liq., 157, 73 (2010); https://doi.org/10.1016/j.molliq.2010.08.012
V.S. Kundu, R.L. Dhiman, D. Singh, A.S. Maan and S. Arora, Int. J. Adv. Res. Sci. Eng., 2, 5 (2013).
R.S. Dongre, eds.: P. Chooto, Lead: Toxicological Profile, Pollution Aspects and Remedial Solutions, In: Lead Chemistry, IntechOpen (2020).
R. Thielsch, T. Bohme, R. Reiche, D. Schlafer, H.D. Bauer and H. Bottcher, Nano Struct. Mater., 10, 131 (1998); https://doi.org/10.1016/S0965-9773(98)00056-7
T.J. Wilkinson, D.L. Perry, E. Spiller, P. Berdahl, S.E. Derenzo and M.J. Weber, Proc. MRS, 704, 117 (2002).
P. Tyagi and A.G. Vedeshwar, Bull. Mater. Sci., 24, 297 (2001); https://doi.org/10.1007/BF02704925
D. Chu, Y. Zeng and D. Jiang, Solid State Commun., 143, 308 (2007); https://doi.org/10.1016/j.ssc.2007.05.036