Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influence of Variant Temperatures in Optical, Magnetic Properties of NiO Nanoparticles and its Supercapacitor Applications via Precipitation Method
Corresponding Author(s) : S. Sivakumar
Asian Journal of Chemistry,
Vol. 33 No. 8 (2021): Vol 33 Issue 8, 2021
Abstract
In this study, nickel oxide nanoparticles have been synthesized via precipitation method and calcinated at 500, 600, 700 and 800 ºC, respectively. TG/DTA curves expose the thermal stability of the prepared/asprepared product. The XRD results revealed that NiO nanoparticles have cubic structure. Crystallite sizes increase with increasing calcination temperatures by using two different methods via Scherer′s method and W-H method. The SEM and TEM images confirmed that the NiO nanoparticles have a spherical morphology with high agglomeration. The photoluminescence (PL) and FT-IR spectra give details of the crystal defects and functional groups present in the prepared samples. The energy bandgap of the prepared products was observed to be decreasing (3.59 to 3.01 eV), respectively. The VSM study confirms the occurrence of weak ferromagnetic behaviour. The highest specific capacitance of 555.62 F g-1 at 10 mV/s was obtained for NiO (800 ºC) nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, S. Venkatesan and S. Perumal, J. Magn. Magn. Mater., 441, 787 (2017); https://doi.org/10.1016/j.jmmm.2017.05.069
- M. Alagiri, S. Ponnusamy and C. Muthamizhchelvan, J. Mater. Sci. Mater. Electron., 23, 728 (2012); https://doi.org/10.1007/s10854-011-0479-6
- K.M. Krishnan, A.B. Pakhomov, Y. Bao, P. Blomqvist, M. Gonzales, Y. Chun, K. Griffin, X. Ji and B.K. Roberts, J. Mater. Sci., 41, 793 (2006); https://doi.org/10.1007/s10853-006-6564-1
- N.M. Deraz, J. Alloys Compd., 501, 317 (2010); https://doi.org/10.1016/j.jallcom.2010.04.096
- M. Pita, J.M. Abad, C. Vaz-Dominguez, C. Briones, E. Mateo-Martí, J.A. Martín-Gago, M. del Puerto Morales and V.M. Fernández, J. Colloid Interface Sci., 321, 484 (2008); https://doi.org/10.1016/j.jcis.2008.02.010
- G. Balaji, R.A. Narayanan, A. Weber, F. Mohammad and C.S.S.R. Kumar, Mater. Sci. Eng. B, 177, 14 (2012); https://doi.org/10.1016/j.mseb.2011.09.023
- H. Wu, M. Qin and L. Zhang, Composite B, 182, 107620 (2019); https://doi.org/10.1016/j.compositesb.2019.107620
- J. Lin, J. Shen, T. Wang, R. Wang, H. Liu, J. Cui and W. Zhou, Mater. Sci. Eng. B, 176, 921 (2011); https://doi.org/10.1016/j.mseb.2011.05.018
- N.M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); https://doi.org/10.1016/j.jaap.2012.04.006
- D. Chen, H. Liu and L. Li, Mater. Chem. Phys., 134, 921 (2012); https://doi.org/10.1016/j.matchemphys.2012.03.091
- R. Kötz and M.J.E.A. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
- B. Ksapabutr, P. Nimnuan and M. Panapoy, Mater. Lett., 153, 24 (2015); https://doi.org/10.1016/j.matlet.2015.03.151
- R.C. Makkus, K. Hemmes and J.H.W. de Wit, J. Electrochem. Soc., 141, 3429 (1994); https://doi.org/10.1149/1.2059349
- Z. Jiao, M. Wu, Z. Qin and H. Xu, Nanotechnology, 14, 458 (2003); https://doi.org/10.1088/0957-4484/14/4/310
- F. Zheng, S. Xu and Y. Zhang, J. Mater. Sci. Mater. Electron., 27, 3576 (2016); https://doi.org/10.1007/s10854-015-4194-6
- S. Morup and A. Hernando, Studies of Superparamagnetism in Samples of Ultrafine Particles, Nanomagnetism, Kluwer Academic Publishers: Boston, USA, pp 93-99 (1993).
- M. Borgstrom, E. Blart, G. Boschloo, E. Mukhtar, L. Hammarstrom, A. Hagfeldt and F. Odobel, J. Phys. Chem. B, 109, 22928 (2005); https://doi.org/10.1021/jp054034a
- K.-C. Liu and M.A. Anderson, J. Electrochem. Soc., 143, 124 (1996); https://doi.org/10.1149/1.1836396
- C.G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier: Amsterdam (1995).
- B. Govindarajan, R. Palanimuthu and K.M. Manikandan, J. Mater. Sci. Mater. Electron., 30, 6519 (2019); https://doi.org/10.1007/s10854-019-00957-2
- J.W. Rasmussen, E. Martinez, P. Louka and D.G. Wingett, Expert Opin. Drug Deliv., 7, 1063 (2010); https://doi.org/10.1517/17425247.2010.502560
- D.Y. Han, H.Y. Yang, C.B. Shen, X. Zhou and F.H. Wang, Powder Technol., 147, 113 (2004); https://doi.org/10.1016/j.powtec.2004.09.024
- K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam and N.V. Jaya, J. Alloys Compd., 509, 181 (2011); https://doi.org/10.1016/j.jallcom.2010.09.033
- R.S. Kumar, S.J. Jeyakumar, M. Jothibas, I.K. Punithavathy and J.P. Richard, J. Mater. Sci. Mater. Electron., 28, 15668 (2017); https://doi.org/10.1007/s10854-017-7456-7
- S.B. Patil, T.N. Ravishankar, K. Lingaraju, G.K. Raghu and G. Nagaraju, J. Mater. Sci. Mater. Electron., 29, 277 (2018); https://doi.org/10.1007/s10854-017-7914-2
- S. Sivakumar, E. Manikandan, B. Mahalakshmi, N.A. Mala and L.N. Prabu, Vacuum, 173, 109116 (2020); https://doi.org/10.1016/j.vacuum.2019.109116
- C.V. Reddy, C. Byon, B. Narendra, D. Baskar, G. Srinivas, J. Shim and S.V. Prabhakar Vattikuti, Superlatt. Microstruct., 82, 165 (2015); https://doi.org/10.1016/j.spmi.2015.02.014
- K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, U.U. De Gomes, R. Ladchumananandasiivam and M. Maaza, Ceram. Int., 42, 8385 (2016); https://doi.org/10.1016/j.ceramint.2016.02.054
- A. Barakat, M. Al-Noaimi, M. Suleiman, A. Aldwayyan, B. Hammouti, T. Hadda, S. Haddad, A. Boshaala and I. Warad, Int. J. Mol. Sci., 14, 23941 (2013); https://doi.org/10.3390/ijms141223941
- K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran and Y. Al-Douri, AIP Adv., 9, 055202 (2019); https://doi.org/10.1063/1.5078411
- Z.N. Kayani, A. Kamran, Z. Saddiqe, S. Riaz and S. Naseem, J. Photochem. Photobiol. B, 183, 357 (2018); https://doi.org/10.1016/j.jphotobiol.2018.04.051
- G. Rajesh, S. Akilandeswari, D. Govindarajan and K. Thirumalai, Mater. Res. Express, 6, 1050a9 (2019); https://doi.org/10.1088/2053-1591/ab405e
- M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z.A. Talib, S.B. Paiman and M.A. Kamarudeen, Results Phys., 6, 1024 (2016); https://doi.org/10.1016/j.rinp.2016.11.031
- S.R. Nalage, M.A. Chougule, S. Sen, P.B. Joshi and V.B. Patil, Thin Solid Films, 520, 4835 (2012); https://doi.org/10.1016/j.tsf.2012.02.072
- B. Kisan, P. Saravanan, S. Layek, H. Verma, D. Hesp, S. Krishnamurthy, V. Dhanak and A. Perumal, J. Magn. Magn. Mater., 384, 296 (2015); https://doi.org/10.1016/j.jmmm.2015.02.065
- A. Jafari, S.P. Jahromi, K. Boustani, B.T. Goh and N.M. Huang, J. Magn. Magn. Mater., 469, 383 (2019); https://doi.org/10.1016/j.jmmm.2018.08.005
- A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, R.J. Ramalingam, L.J. Kennedy and H.A. Al-Lohedan, J. Photochem. Photobiol. B, 180, 39 (2018); https://doi.org/10.1016/j.jphotobiol.2018.01.023
- F. Motahari, M.R. Mozdianfard, F. Soofivand and M. Salavati-Niasari, RSC Adv., 4, 27654 (2014); https://doi.org/10.1039/c4ra02697g
- K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan and G. Viruthagiri, Mater. Sci. Semicond. Process., 27, 846 (2014); https://doi.org/10.1016/j.mssp.2014.08.025
References
R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, S. Venkatesan and S. Perumal, J. Magn. Magn. Mater., 441, 787 (2017); https://doi.org/10.1016/j.jmmm.2017.05.069
M. Alagiri, S. Ponnusamy and C. Muthamizhchelvan, J. Mater. Sci. Mater. Electron., 23, 728 (2012); https://doi.org/10.1007/s10854-011-0479-6
K.M. Krishnan, A.B. Pakhomov, Y. Bao, P. Blomqvist, M. Gonzales, Y. Chun, K. Griffin, X. Ji and B.K. Roberts, J. Mater. Sci., 41, 793 (2006); https://doi.org/10.1007/s10853-006-6564-1
N.M. Deraz, J. Alloys Compd., 501, 317 (2010); https://doi.org/10.1016/j.jallcom.2010.04.096
M. Pita, J.M. Abad, C. Vaz-Dominguez, C. Briones, E. Mateo-Martí, J.A. Martín-Gago, M. del Puerto Morales and V.M. Fernández, J. Colloid Interface Sci., 321, 484 (2008); https://doi.org/10.1016/j.jcis.2008.02.010
G. Balaji, R.A. Narayanan, A. Weber, F. Mohammad and C.S.S.R. Kumar, Mater. Sci. Eng. B, 177, 14 (2012); https://doi.org/10.1016/j.mseb.2011.09.023
H. Wu, M. Qin and L. Zhang, Composite B, 182, 107620 (2019); https://doi.org/10.1016/j.compositesb.2019.107620
J. Lin, J. Shen, T. Wang, R. Wang, H. Liu, J. Cui and W. Zhou, Mater. Sci. Eng. B, 176, 921 (2011); https://doi.org/10.1016/j.mseb.2011.05.018
N.M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); https://doi.org/10.1016/j.jaap.2012.04.006
D. Chen, H. Liu and L. Li, Mater. Chem. Phys., 134, 921 (2012); https://doi.org/10.1016/j.matchemphys.2012.03.091
R. Kötz and M.J.E.A. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
B. Ksapabutr, P. Nimnuan and M. Panapoy, Mater. Lett., 153, 24 (2015); https://doi.org/10.1016/j.matlet.2015.03.151
R.C. Makkus, K. Hemmes and J.H.W. de Wit, J. Electrochem. Soc., 141, 3429 (1994); https://doi.org/10.1149/1.2059349
Z. Jiao, M. Wu, Z. Qin and H. Xu, Nanotechnology, 14, 458 (2003); https://doi.org/10.1088/0957-4484/14/4/310
F. Zheng, S. Xu and Y. Zhang, J. Mater. Sci. Mater. Electron., 27, 3576 (2016); https://doi.org/10.1007/s10854-015-4194-6
S. Morup and A. Hernando, Studies of Superparamagnetism in Samples of Ultrafine Particles, Nanomagnetism, Kluwer Academic Publishers: Boston, USA, pp 93-99 (1993).
M. Borgstrom, E. Blart, G. Boschloo, E. Mukhtar, L. Hammarstrom, A. Hagfeldt and F. Odobel, J. Phys. Chem. B, 109, 22928 (2005); https://doi.org/10.1021/jp054034a
K.-C. Liu and M.A. Anderson, J. Electrochem. Soc., 143, 124 (1996); https://doi.org/10.1149/1.1836396
C.G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier: Amsterdam (1995).
B. Govindarajan, R. Palanimuthu and K.M. Manikandan, J. Mater. Sci. Mater. Electron., 30, 6519 (2019); https://doi.org/10.1007/s10854-019-00957-2
J.W. Rasmussen, E. Martinez, P. Louka and D.G. Wingett, Expert Opin. Drug Deliv., 7, 1063 (2010); https://doi.org/10.1517/17425247.2010.502560
D.Y. Han, H.Y. Yang, C.B. Shen, X. Zhou and F.H. Wang, Powder Technol., 147, 113 (2004); https://doi.org/10.1016/j.powtec.2004.09.024
K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam and N.V. Jaya, J. Alloys Compd., 509, 181 (2011); https://doi.org/10.1016/j.jallcom.2010.09.033
R.S. Kumar, S.J. Jeyakumar, M. Jothibas, I.K. Punithavathy and J.P. Richard, J. Mater. Sci. Mater. Electron., 28, 15668 (2017); https://doi.org/10.1007/s10854-017-7456-7
S.B. Patil, T.N. Ravishankar, K. Lingaraju, G.K. Raghu and G. Nagaraju, J. Mater. Sci. Mater. Electron., 29, 277 (2018); https://doi.org/10.1007/s10854-017-7914-2
S. Sivakumar, E. Manikandan, B. Mahalakshmi, N.A. Mala and L.N. Prabu, Vacuum, 173, 109116 (2020); https://doi.org/10.1016/j.vacuum.2019.109116
C.V. Reddy, C. Byon, B. Narendra, D. Baskar, G. Srinivas, J. Shim and S.V. Prabhakar Vattikuti, Superlatt. Microstruct., 82, 165 (2015); https://doi.org/10.1016/j.spmi.2015.02.014
K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, U.U. De Gomes, R. Ladchumananandasiivam and M. Maaza, Ceram. Int., 42, 8385 (2016); https://doi.org/10.1016/j.ceramint.2016.02.054
A. Barakat, M. Al-Noaimi, M. Suleiman, A. Aldwayyan, B. Hammouti, T. Hadda, S. Haddad, A. Boshaala and I. Warad, Int. J. Mol. Sci., 14, 23941 (2013); https://doi.org/10.3390/ijms141223941
K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran and Y. Al-Douri, AIP Adv., 9, 055202 (2019); https://doi.org/10.1063/1.5078411
Z.N. Kayani, A. Kamran, Z. Saddiqe, S. Riaz and S. Naseem, J. Photochem. Photobiol. B, 183, 357 (2018); https://doi.org/10.1016/j.jphotobiol.2018.04.051
G. Rajesh, S. Akilandeswari, D. Govindarajan and K. Thirumalai, Mater. Res. Express, 6, 1050a9 (2019); https://doi.org/10.1088/2053-1591/ab405e
M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z.A. Talib, S.B. Paiman and M.A. Kamarudeen, Results Phys., 6, 1024 (2016); https://doi.org/10.1016/j.rinp.2016.11.031
S.R. Nalage, M.A. Chougule, S. Sen, P.B. Joshi and V.B. Patil, Thin Solid Films, 520, 4835 (2012); https://doi.org/10.1016/j.tsf.2012.02.072
B. Kisan, P. Saravanan, S. Layek, H. Verma, D. Hesp, S. Krishnamurthy, V. Dhanak and A. Perumal, J. Magn. Magn. Mater., 384, 296 (2015); https://doi.org/10.1016/j.jmmm.2015.02.065
A. Jafari, S.P. Jahromi, K. Boustani, B.T. Goh and N.M. Huang, J. Magn. Magn. Mater., 469, 383 (2019); https://doi.org/10.1016/j.jmmm.2018.08.005
A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, R.J. Ramalingam, L.J. Kennedy and H.A. Al-Lohedan, J. Photochem. Photobiol. B, 180, 39 (2018); https://doi.org/10.1016/j.jphotobiol.2018.01.023
F. Motahari, M.R. Mozdianfard, F. Soofivand and M. Salavati-Niasari, RSC Adv., 4, 27654 (2014); https://doi.org/10.1039/c4ra02697g
K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan and G. Viruthagiri, Mater. Sci. Semicond. Process., 27, 846 (2014); https://doi.org/10.1016/j.mssp.2014.08.025