Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solvation Behaviour of Some Copper(I) Nitrate Complexes in Dimethylsulfoxide and Nitromethane at 298 K
Corresponding Author(s) : Manpreet Kaur
Asian Journal of Chemistry,
Vol. 33 No. 8 (2021): Vol 33 Issue 8, 2021
Abstract
The ultrasonic velocities of solutions of Bu4NBPh4, Bu4NClO4, [Cu(AN)4]NO3, [Cu(BN)4]NO3, [Cu(Phen)2]NO3, [Cu(DMPhen)2]NO3, [Cu(Bipy)2]NO3 and [Cu(TU)4]NO3 (where AN = acetonitrile, BN = benzonitrile, Phen = 1,10-phenanthroline, DMPhen = 2,9-dimethyl-1,10-phenanthroline, Bipy = 2,2′-bipyridyl and TU = thiourea) were measured in the concentration range 0.03-0.27 M in dimethylsulfoxide (DMSO), nitromethane (NM) and binary mixtures of DMSO + NM containing 0, 20, 40, 60, 80 and 100 mol% NM at 298 K in the present studies. Using ultrasonic velocity and density data, isentropic compressibility (κs) and apparent molal isentropic compressibility (κs,f) for electrolytes in DMSO + NM mixture have been calculated. Result shows that copper(I) electrolytes show less solvation in NM rich regions indicating structure breaking tendency of nitromethane. Extent of solvation in Cu(I) ions decreases in the order: [Cu(AN)4]+ > [Cu(BN)4]+ > [Cu(TU)4]+ > [Cu(DMPhen)2]+ > [Cu(Phen)2]+ > [Cu(Bipy)2]+.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.V. Kustov, A.V. Bekeneva, V.I. Saveliev and V.P. Korolyov, J. Solution Chem., 31, 71 (2002); https://doi.org/10.1023/A:1014809219103
- D.S. Gill, A. Kumari, R. Gupta, S.P. Jauhar and J.K. Puri, Z. Phys. Chem., 219, 1099 (2005); https://doi.org/10.1524/zpch.2005.219.8.1099
- D.S. Gill, V. Pathania, B.K. Vermani and R.P. Sharma, Z. Phys. Chem., 217, 739 (2003); https://doi.org/10.1524/zpch.217.6.739.20446
- R.P. Sharma, R. Sharma, R. Bala, D.S. Gill, S. Singh, J.K. Puri, L. Russo and K. Rissanen, J. Chem. Crystallogr., 36, 619 (2006); https://doi.org/10.1007/s10870-006-9106-4.;
- D.S. Gill, Electrochim. Acta, 24, 701 (1979); https://doi.org/10.1016/0013-4686(79)87054-1
- Z. Luo, L. Fu, J. Zhu, W. Yang, D. Li and L. Zhou, J. Power Sources, 448, 22756 (2020); https://doi.org/10.1016/j.jpowsour.2019.227569
- C.E. Housecroft and E.C. Constable, Chem. Soc. Rev., 44, 8386 (2015); https://doi.org/10.1039/C5CS00215J
- M. Gratzel, Acc. Chem. Res., 42, 1788 (2009); https://doi.org/10.1021/ar900141y
- M. Gratzel, Inorg. Chem., 44, 6841 (2005); https://doi.org/10.1021/ic0508371
- H.C. Kolb, M.G. Finn and K.B. Sharpless, Angew. Chem., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AIDANIE2004>3.0.CO;2-5
- H. Brunner, C. Blüchel and M.P. Doyle, J. Organomet. Chem., 541, 89 (1997); https://doi.org/10.1016/S0022-328X(97)00018-1
- R. Poli, Eur. J. Inorg. Chem., 2011, 1513 (2011); https://doi.org/10.1002/ejic.201001364
- W.T. Eckenhoff and T. Pintauer, Inorg. Chem., 46, 5844 (2007); https://doi.org/10.1021/ic700908m
- A.N. Fletcher, J. Phys. Chem., 73, 2217 (1969); https://doi.org/10.1021/j100727a019
- D.S. Gill, U. Kamp, A. Doelleb and M.D. Zeidler, Indian J. Chem., 40A, 693 (2001).
- J.D. Pandey, Shikha, A.K. Shukla and A.K. Singh, Pramana J. Phys., 43, 353 (1994).
- Pankaj and C. Sharma, Ultrasonics, 29, 344 (1991); https://doi.org/10.1016/0041-624X(91)90033-5
- H. Rodrýguez and J.F. Brennecke, J. Chem. Eng. Data, 51, 2145 (2006); https://doi.org/10.1021/je0602824
- V.A. Del Grosso and C.W. Mader, J. Acoust. Soc. Am., 52, 1442 (1972); https://doi.org/10.1121/1.1913258
- D.S. Gill, Rohitash, H. Anand and J.K. Puri, J. Mol. Liq., 15, 98 (2002); https://doi.org/10.1016/S0167-7322(01)00303-8
- P.G. Sears, G.R. Lester and L.R. Dawson, J. Phys. Chem., 60, 1433 (1956); https://doi.org/10.1021/j150544a024
- C.J. Thompson, H.J. Coleman and R.V. Helm, J. Am. Chem. Soc., 76, 3445 (1954); https://doi.org/10.1021/ja01642a023
- J.A. Riddick, W.B. Bugner and T.K. Sakano, Organic Solvents, Physical Properties and Methods of Purification, Wiley Interscience: New York, Eds.: 4 (1986).
- D.S. Gill, H. Anand, A. Kumari and J.K. Puri, Z. Naturforsch., 59a, 615 (2004); https://doi.org/10.1515/zna-2004-0912
- D.S. Gill, A.N. Sharma and H. Schneider, J. Chem. Soc. Faraday. Trans., 78, 465-474 (1982); https://doi.org/10.1039/f19827800465
- N.G. Tsierkezos and M.M. Palaiologou, Phys. Chem. Liq., 47, 447 (2009); https://doi.org/10.1080/00319100802104855
- J. Krakowiak, D. Bobicz and W. Grzybkowski, J. Mol. Liq., 88, 197 (2000); https://doi.org/10.1016/S0167-7322(00)00154-9
- D.S. Gill, V. Pathania, A. Kumari, H. Anand and S.P. Jauhar, Z. Phys. Chem., 218, 857 (2004); https://doi.org/10.1524/zpch.218.7.857.35729
- T. Zhao, J. Zhang, B. Guo, F. Zhang, F. Sha, X. Xie and X. Wei, J. Mol. Liq., 207, 315 (2015); https://doi.org/10.1016/j.molliq.2015.04.001
- L.S. Gabrielyan, S.A. Markarian and H. Weingartner, J. Mol. Liq., 194, 37 (2014); https://doi.org/10.1016/j.molliq.2014.01.013
- V. Pathania, S. Sharma, S. Kiran and B.K. Vermani, Rasayan J. Chem., 13, 264-274 (2020); https://doi.org/10.31788/RJC.2020.1315615
- C.A. Cerdeirina, C. A. Tovar, J. Troncoso, E. Carballo and L. Romani, Fluid. Phs. Equilibr., 157, 93- 102 (1999); https://doi.org/10.1016/S0378-3812(99)00018-7
- R. Dewan and M.N. Roy, J. Chem. Thermodyn., 54, 28 (2012); https://doi.org/10.1016/j.jct.2012.03.002
- C.H. Tu, S.L. Lee and H. Pery, J. Chem. Eng. Data., 46, 151 (2001); https://doi.org/10.1021/je0002080
- A. Nazeta, L. Weib and R. Buchner, J. Mol. Liq., 228, 81 (2017); https://doi.org/10.1016/j.molliq.2016.09.008
- A. Cwikliñska and C.M. Kinart, J. Chem. Thermodyn., 43, 420 (2011); https://doi.org/10.1016/j.jct.2010.10.016
- J. Singh, T. Kaur, V. Ali and D.S. Gill, J. Chem. Soc. Faraday Trans., 90, 579 (1994); https://doi.org/10.1039/FT9949000579
- I. Davidson, G. Perron and J.E. Desnoyers, Can. J. Chem., 59, 2212 (1981); https://doi.org/10.1139/v81-319
- D.S. Gill and M.S. Sekhri, J. Chem. Soc. Faraday Trans. 1, 78, 119 (1982); https://doi.org/10.1039/F19827800119
- F.J. Millero, J. Phys. Chem., 75, 280 (1971); https://doi.org/10.1021/j100672a016
References
A.V. Kustov, A.V. Bekeneva, V.I. Saveliev and V.P. Korolyov, J. Solution Chem., 31, 71 (2002); https://doi.org/10.1023/A:1014809219103
D.S. Gill, A. Kumari, R. Gupta, S.P. Jauhar and J.K. Puri, Z. Phys. Chem., 219, 1099 (2005); https://doi.org/10.1524/zpch.2005.219.8.1099
D.S. Gill, V. Pathania, B.K. Vermani and R.P. Sharma, Z. Phys. Chem., 217, 739 (2003); https://doi.org/10.1524/zpch.217.6.739.20446
R.P. Sharma, R. Sharma, R. Bala, D.S. Gill, S. Singh, J.K. Puri, L. Russo and K. Rissanen, J. Chem. Crystallogr., 36, 619 (2006); https://doi.org/10.1007/s10870-006-9106-4.;
D.S. Gill, Electrochim. Acta, 24, 701 (1979); https://doi.org/10.1016/0013-4686(79)87054-1
Z. Luo, L. Fu, J. Zhu, W. Yang, D. Li and L. Zhou, J. Power Sources, 448, 22756 (2020); https://doi.org/10.1016/j.jpowsour.2019.227569
C.E. Housecroft and E.C. Constable, Chem. Soc. Rev., 44, 8386 (2015); https://doi.org/10.1039/C5CS00215J
M. Gratzel, Acc. Chem. Res., 42, 1788 (2009); https://doi.org/10.1021/ar900141y
M. Gratzel, Inorg. Chem., 44, 6841 (2005); https://doi.org/10.1021/ic0508371
H.C. Kolb, M.G. Finn and K.B. Sharpless, Angew. Chem., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AIDANIE2004>3.0.CO;2-5
H. Brunner, C. Blüchel and M.P. Doyle, J. Organomet. Chem., 541, 89 (1997); https://doi.org/10.1016/S0022-328X(97)00018-1
R. Poli, Eur. J. Inorg. Chem., 2011, 1513 (2011); https://doi.org/10.1002/ejic.201001364
W.T. Eckenhoff and T. Pintauer, Inorg. Chem., 46, 5844 (2007); https://doi.org/10.1021/ic700908m
A.N. Fletcher, J. Phys. Chem., 73, 2217 (1969); https://doi.org/10.1021/j100727a019
D.S. Gill, U. Kamp, A. Doelleb and M.D. Zeidler, Indian J. Chem., 40A, 693 (2001).
J.D. Pandey, Shikha, A.K. Shukla and A.K. Singh, Pramana J. Phys., 43, 353 (1994).
Pankaj and C. Sharma, Ultrasonics, 29, 344 (1991); https://doi.org/10.1016/0041-624X(91)90033-5
H. Rodrýguez and J.F. Brennecke, J. Chem. Eng. Data, 51, 2145 (2006); https://doi.org/10.1021/je0602824
V.A. Del Grosso and C.W. Mader, J. Acoust. Soc. Am., 52, 1442 (1972); https://doi.org/10.1121/1.1913258
D.S. Gill, Rohitash, H. Anand and J.K. Puri, J. Mol. Liq., 15, 98 (2002); https://doi.org/10.1016/S0167-7322(01)00303-8
P.G. Sears, G.R. Lester and L.R. Dawson, J. Phys. Chem., 60, 1433 (1956); https://doi.org/10.1021/j150544a024
C.J. Thompson, H.J. Coleman and R.V. Helm, J. Am. Chem. Soc., 76, 3445 (1954); https://doi.org/10.1021/ja01642a023
J.A. Riddick, W.B. Bugner and T.K. Sakano, Organic Solvents, Physical Properties and Methods of Purification, Wiley Interscience: New York, Eds.: 4 (1986).
D.S. Gill, H. Anand, A. Kumari and J.K. Puri, Z. Naturforsch., 59a, 615 (2004); https://doi.org/10.1515/zna-2004-0912
D.S. Gill, A.N. Sharma and H. Schneider, J. Chem. Soc. Faraday. Trans., 78, 465-474 (1982); https://doi.org/10.1039/f19827800465
N.G. Tsierkezos and M.M. Palaiologou, Phys. Chem. Liq., 47, 447 (2009); https://doi.org/10.1080/00319100802104855
J. Krakowiak, D. Bobicz and W. Grzybkowski, J. Mol. Liq., 88, 197 (2000); https://doi.org/10.1016/S0167-7322(00)00154-9
D.S. Gill, V. Pathania, A. Kumari, H. Anand and S.P. Jauhar, Z. Phys. Chem., 218, 857 (2004); https://doi.org/10.1524/zpch.218.7.857.35729
T. Zhao, J. Zhang, B. Guo, F. Zhang, F. Sha, X. Xie and X. Wei, J. Mol. Liq., 207, 315 (2015); https://doi.org/10.1016/j.molliq.2015.04.001
L.S. Gabrielyan, S.A. Markarian and H. Weingartner, J. Mol. Liq., 194, 37 (2014); https://doi.org/10.1016/j.molliq.2014.01.013
V. Pathania, S. Sharma, S. Kiran and B.K. Vermani, Rasayan J. Chem., 13, 264-274 (2020); https://doi.org/10.31788/RJC.2020.1315615
C.A. Cerdeirina, C. A. Tovar, J. Troncoso, E. Carballo and L. Romani, Fluid. Phs. Equilibr., 157, 93- 102 (1999); https://doi.org/10.1016/S0378-3812(99)00018-7
R. Dewan and M.N. Roy, J. Chem. Thermodyn., 54, 28 (2012); https://doi.org/10.1016/j.jct.2012.03.002
C.H. Tu, S.L. Lee and H. Pery, J. Chem. Eng. Data., 46, 151 (2001); https://doi.org/10.1021/je0002080
A. Nazeta, L. Weib and R. Buchner, J. Mol. Liq., 228, 81 (2017); https://doi.org/10.1016/j.molliq.2016.09.008
A. Cwikliñska and C.M. Kinart, J. Chem. Thermodyn., 43, 420 (2011); https://doi.org/10.1016/j.jct.2010.10.016
J. Singh, T. Kaur, V. Ali and D.S. Gill, J. Chem. Soc. Faraday Trans., 90, 579 (1994); https://doi.org/10.1039/FT9949000579
I. Davidson, G. Perron and J.E. Desnoyers, Can. J. Chem., 59, 2212 (1981); https://doi.org/10.1139/v81-319
D.S. Gill and M.S. Sekhri, J. Chem. Soc. Faraday Trans. 1, 78, 119 (1982); https://doi.org/10.1039/F19827800119
F.J. Millero, J. Phys. Chem., 75, 280 (1971); https://doi.org/10.1021/j100672a016