Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Progress in the Applications of Raman Spectroscopy in Microbial Identification: A Review
Corresponding Author(s) : Adil Emin
Asian Journal of Chemistry,
Vol. 33 No. 6 (2021): Vol 33 Issue 6, 2021
Abstract
After more than 40 years of development, surface-enhanced Raman spectroscopy (SERS) has become a powerful and mature analytical tool. It has been widely used in surface science, materials science, biomedicine, drug analysis, food safety, environmental testing, etc. SERS technology has molecular-level detection accuracy, which can effectively amplify signals and has obvious advantages in realizing trace substance detection. In present article, a comprehensive review of the SERS technology and related applications in microbial identification is carried out, and its future research hotspots and development directions are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Mahoney and R.P. Cooney, J. Phys. Chem., 87, 4589 (1983); https://doi.org/10.1021/j100246a011
- G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings and R. Aroca, Langmuir, 2, 689 (1986); https://doi.org/10.1021/la00072a001
- A. Bruckbauer and A. Otto, J. Raman Spectrosc., 29, 665 (1998); https://doi.org/10.1002/(SICI)10974555(199808)29:8<665::AIDJRS288>3.0.CO;2-6
- J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang and Z.Q. Tian, Nature, 464, 392 (2010); https://doi.org/10.1038/nature08907
- J.R. Anema, J.F. Li, Z.L. Yang, B. Ren and Z.Q. Tian, Annu. Rev. Anal. Chem., 4, 129 (2011); https://doi.org/10.1146/annurev.anchem.111808.073632
- Y.-F. Huang, C.-Y. Li, I. Broadwell, J.-F. Li, D.-Y. Wu, B. Ren and Z.-Q. Tian, Electrochim. Acta, 56, 10652 (2011); https://doi.org/10.1016/j.electacta.2011.04.107
- B. Ren, Q.J. Huang, W.B. Cai, B.W. Mao, F.M. Liu and Z.Q. Tian, J. Electroanal. Chem., 415, 175 (1996); https://doi.org/10.1016/S0022-0728(96)01004-2
- G. Blyholder, J. Phys. Chem. C, 79, 756 (1974); https://doi.org/10.1021/j100574a018
- C.M. Lieber and N.S. Lewis, J. Am. Chem. Soc., 106, 5033 (1984); https://doi.org/10.1021/ja00329a082
- Y. Deng and B.S. Yeo, ACS Catal., 7, 7873 (2017); https://doi.org/10.1021/acscatal.7b02561
- S. Hu, B.J. Liu, J.M. Feng, C. Zong, K.Q. Lin, X. Wang, D.Y. Wu and B. Ren, J. Am. Chem. Soc., 140, 13680 (2018); https://doi.org/10.1021/jacs.8b06083
- X.M. Lin, Y. Cui, Y.H. Xu, B. Ren and Z.Q. Tian, Anal. Bioanal. Chem., 394, 1729 (2009); https://doi.org/10.1007/s00216-009-761-5
- K.G. Schmitt and A.A. Gewirth, J. Phys. Chem. C, 118, 17567 (2014); https://doi.org/10.1021/jp503598y
- T.W.A.H.Y. Ichinohe, T. Wadayama and A. Hatta, J. Raman Spectrosc., 26, 335 (1995); https://doi.org/10.1002/jrs.1250260503
- Y.-F. Huang, H.-P. Zhu, G.-K. Liu, D.-Y. Wu, B. Ren and Z.-Q. Tian, J. Am. Chem. Soc., 132, 9244 (2010); https://doi.org/10.1021/ja101107z
- C.V. Raman and K.S. Krishnan, Nature, 121, 501 (1928); https://doi.org/10.1038/121501c0
- Hind-Limb Reflexes in the Kitten: Properties of the Two-Neuron Arc, Nature, 187, 134 (1960); https://doi.org/10.1038/187134a0
- M. Fleischmann, P.J. Hendra and A.J. McQuillan, Chem. Phys. Lett., 26, 163 (1974); https://doi.org/10.1016/0009-2614(74)85388-1
- D.L. Jeanmaire and R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem., 84, 1 (1977); https://doi.org/10.1016/S0022-0728(77)80224-6
- B. Pettinger and U. Tiedemann, J. Electroanal. Chem. Interfacial Electrochem., 228, 219 (1987); https://doi.org/10.1016/0022-0728(87)80108-0
- H.D. Abruña, Electrochemical Interfaces: Modern Techniques for in situ Characterization, VCH: New York (1991).
- C.V. Raman and K.S. Krishnan, Indian J. Phys., 2, 399 (1928).
- H. Yoshio, K. Katsuhei and S. Shin, Chem. Lett., 14, 1695 (1985); https://doi.org/10.1246/cl.1985.1695
- P.A. Christensen and A. Hamnet, Techniques and Mechanisms in Electrochemistry, Chapman & Hall: London (1993).
- S.Z.Z.Y.X. Chen, S.Z. Zou, K.Q. Huang and Z.Q. Tian, J. Raman Spectrosc., 29, 749 (1998); https://doi.org/10.1002/(SICI)1097-4555(199808)29:8<749::AIDJRS285>3.0.CO;2-2
- M.G. Albrecht and J.A. Creighton, J. Am. Chem. Soc., 99, 5215 (1977); https://doi.org/10.1021/ja00457a071
- C. Pettenkofer and A. Otto, Surf. Sci., 151, 37 (1985); https://doi.org/10.1016/0039-6028(85)90453-4
- D.L. Jeanmaire, M.R. Suchanski and R.P. Van Duyne, J. Am. Chem. Soc., 97, 1699 (1975); https://doi.org/10.1021/ja00840a013
- J.A. Creighton, C.G. Blatchford and M.G. Albrecht, J. Chem. Soc., Faraday Trans. 2, 75, 790 (1979); https://doi.org/10.1039/F29797500790
- R.P. Van Duyne, D.L. Jeanmaire and D.F. Shriver, Anal. Chem., 46, 213 (1974); https://doi.org/10.1021/ac60338a012
- K. Aoki, H. Yamawaki, M. Sakashita, Y. Gotoh and K. Takemura, Science, 263, 354 (1994); https://doi.org/10.1126/science.263.5145.356
- G.-K. Liu, B. Ren, D.-Y. Wu, S. Duan, J.-F. Li, J.-L. Yao, R.-A. Gu and Z.-Q. Tian, J. Phys. Chem. B, 110, 17498 (2006);
- https://doi.org/10.1021/jp060485z
- Y.X. Jiang, J.F. Li, D.Y. Wu, Z.L. Yang, B. Ren, J.W. Hu, Y.L. Chow and Z.Q. Tian, Chem. Commun., 4608 (2007); https://doi.org/10.1039/b711218a
- I. Oda, H. Ogasawara and M. Ito, Langmuir, 12, 1094 (1996); https://doi.org/10.1021/la950167j
- C. Muller, L. David, V. Chis and S.C. Pinzaru, Food Chem., 145, 814 (2014); https://doi.org/10.1016/j.foodchem.2013.08.136
- M. Kubacková, S. Karácsonyi, L. Bilisics and R. Toman, Folia Microbiol., 23, 202 (1978); https://doi.org/10.1007/BF02876580
- K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari and M.S. Feld, Phys. Rev. Lett., 78, 1667 (1997); https://doi.org/10.1103/PhysRevLett.78.1667
- W. Wijaya, S. Pang, T.P. Labuza and L. He, J. Food Sci., 79, T743 (2014); https://doi.org/10.1111/1750-3841.12391
- P.K. Roy, Y.F. Huang and S. Chattopadhyay, J. Biomed. Opt., 19, 011002 (2013); https://doi.org/10.1117/1.JBO.19.1.011002
- Y. Cui, X.-S. Zheng, B. Ren, R. Wang, J. Zhang, N.-S. Xia and Z.-Q. Tian, Chem. Sci., 2, 1463 (2011); https://doi.org/10.1039/C1SC00242B
- P. Verma, Chem. Rev., 117, 6447 (2017); https://doi.org/10.1021/acs.chemrev.6b00821
- C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu and B. Man, J. Alloys Compd., 695, 1677 (2017); https://doi.org/10.1016/j.jallcom.2016.10.317
- S.S.R. Dasary, P. Chandra Ray, A.K. Singh, T. Arbneshi, H. Yu and D. Senapati, Analyst, 138, 1195 (2013); https://doi.org/10.1039/c2an36293g
- H.T. Temiz, I.H. Boyaci, I. Grabchev and U. Tamer, Spectrochim. Acta A Mol. Biomol. Spectrosc., 116, 339 (2013); https://doi.org/10.1016/j.saa.2013.07.071
- Z. Zhang, S. Sheng, R. Wang and M. Sun, Anal. Chem., 88, 9328 (2016); https://doi.org/10.1021/acs.analchem.6b02093
- G. Wang, R.J. Lipert, M. Jain, S. Kaur, S. Chakraboty, M.P. Torres, S.K. Batra, R.E. Brand and M.D. Porter, Anal. Chem., 83, 2554 (2011); https://doi.org/10.1021/ac102829b
- H. Chon, S. Lee, S.Y. Yoon, S.I. Chang, D.W. Lim and J. Choo, Chem. Commun., 47, 12515 (2011); https://doi.org/10.1039/c1cc15707h
- A.H. Deng, Z.P. Sun, G.Q. Zhang, J. Wu and T.Y. Wen, Laser Phys. Lett., 9, 636 (2012); https://doi.org/10.7452/lapl.201210052
- J. Xu, J.W. Turner, M. Idso, S.V. Biryukov, L. Rognstad, H. Gong, V.L. Trainer, M.L. Wells, M.S. Strom and Q. Yu, Anal. Chem., 85, 2630 (2013); https://doi.org/10.1021/ac3021888
- H. Zhou, D. Yang, N.P. Ivleva, N.E. Mircescu, S. Schubert, R. Niessner, A. Wieser and C. Haisch, Anal. Chem., 87, 6553 (2015); https://doi.org/10.1021/acs.analchem.5b01271
- X. Wu, C. Xu, R.A. Tripp, Y.W. Huang and Y. Zhao, Analyst, 138, 3005 (2013); https://doi.org/10.1039/c3an00186e
- S. Meisel, S. Stockel, P. Rosch and J. Popp, Food Microbiol., 38, 36 (2014); https://doi.org/10.1016/j.fm.2013.08.007
- X. Lu, D.R. Samuelson, Y. Xu, H. Zhang, S. Wang, B.A. Rasco, J. Xu and M.E. Konkel, Anal. Chem., 85, 2320 (2013); https://doi.org/10.1021/ac303279u
- F. Qiu, L.Ü. Xin-sheng and Y. Huang, Chin. Med. J., 120, 2260 (2007); https://doi.org/10.1097/00029330-200712020-00020
- S. Kloß, B. Kampe, S. Sachse, P. Rosch, E. Straube, W. Pfister, M. Kiehntopf and J. Popp, Anal. Chem., 85, 9610 (2013); https://doi.org/10.1021/ac401806f
- C. Fan, Z. Hu, A. Mustapha and M. Lin, Appl. Microbiol. Biotechnol., 92, 1053 (2011); https://doi.org/10.1007/s00253-011-3634-3
- Y. Wang, S. Ravindranath and J. Irudayaraj, Anal. Bioanal. Chem., 399, 1271 (2011); https://doi.org/10.1007/s00216-010-4453-6
- J. Sundaram, B. Park, Y. Kwon and K.C. Lawrence, Int. J. Food Microbiol., 167, 67 (2013); https://doi.org/10.1016/j.ijfoodmicro.2013.05.013
- K. Yang, H.Z. Li, X. Zhu, J.Q. Su, B. Ren, Y.G. Zhu and L. Cui, Anal. Chem., 91, 6296 (2019); https://doi.org/10.1021/acs.analchem.9b01064
- L.N. Quan, B.P. Rand, R.H. Friend, S.G. Mhaisalkar, T.W. Lee and E.H. Sargent, Chem. Rev., 119, 7444 (2019); https://doi.org/10.1021/acs.chemrev.9b00107
- M. Autore, P. Li, I. Dolado, F.J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L.E. Hueso, P. Alonso-Gonzalez, J. Aizpurua, A.Y. Nikitin, S. Velez and R. Hillenbrand, Light Sci. Appl., 7, 17172 (2018); https://doi.org/10.1038/lsa.2017.172
- Z. Cao, Z. Li, Y. Zhao, Y. Song and J. Lu, Anal. Chim. Acta, 557, 152 (2006); https://doi.org/10.1016/j.aca.2005.10.048
- K. Lee, V.P. Drachev and J. Irudayaraj, ACS Nano, 5, 2109 (2011); https://doi.org/10.1021/nn1030862
- S.L. Hennigan, J.D. Driskell, N. Ferguson-Noel, R.A. Dluhy, Y. Zhao, R.A. Tripp and D.C. Krause, Appl. Environ. Microbiol., 78, 1930 (2012); https://doi.org/10.1128/AEM.07419-11
- P. Cambraia Lopes, J. Biomed. Opt., 16, 127001 (2011); https://doi.org/10.1117/1.3658756
- Y.C. Cao, Science, 297, 1536 (2002); https://doi.org/10.1126/science.297.5586.1536
- I. Ijjaali, A.D. McFarland, C.L. Haynes, R.P. Van Duyne and J.A. Ibers, J. Solid State Chem., 172, 127 (2003); https://doi.org/10.1016/S0022-4596(02)00168-8
- S. Liu, S. Wan, M. Chen and M. Sun, J. Raman Spectrosc., 39, 1170 (2008); https://doi.org/10.1002/jrs.1958
- Y.C. Yang, H. Yu, D.W. Xiao, H. Liu, Q. Hu, B. Huang, W.J. Liao and W.F. Huang, J. Microbiol. Methods, 77, 202 (2009); https://doi.org/10.1016/j.mimet.2009.02.004
- Y. Xie, Y. Li, L. Niu, H. Wang, H. Qian and W. Yao, Talanta, 100, 32 (2012); https://doi.org/10.1016/j.talanta.2012.07.080
- M.-M. Liang, Y.-H. Wang, R. Shao, W.-M. Yang, H. Zhang, H. Zhang, Z.-L. Yang, J.-F. Li and Z.-Q. Tian, Electrochem. Commun., 81, 38 (2017); https://doi.org/10.1016/j.elecom.2017.05.022
- J. Cailletaud, C. De Bleye, E. Dumont, P.Y. Sacre, L. Netchacovitch, Y. Gut, M. Boiret, Y.M. Ginot, P. Hubert and E. Ziemons, J. Pharm. Biomed. Anal., 147, 458 (2018); https://doi.org/10.1016/j.jpba.2017.06.056
References
M.R. Mahoney and R.P. Cooney, J. Phys. Chem., 87, 4589 (1983); https://doi.org/10.1021/j100246a011
G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings and R. Aroca, Langmuir, 2, 689 (1986); https://doi.org/10.1021/la00072a001
A. Bruckbauer and A. Otto, J. Raman Spectrosc., 29, 665 (1998); https://doi.org/10.1002/(SICI)10974555(199808)29:8<665::AIDJRS288>3.0.CO;2-6
J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang and Z.Q. Tian, Nature, 464, 392 (2010); https://doi.org/10.1038/nature08907
J.R. Anema, J.F. Li, Z.L. Yang, B. Ren and Z.Q. Tian, Annu. Rev. Anal. Chem., 4, 129 (2011); https://doi.org/10.1146/annurev.anchem.111808.073632
Y.-F. Huang, C.-Y. Li, I. Broadwell, J.-F. Li, D.-Y. Wu, B. Ren and Z.-Q. Tian, Electrochim. Acta, 56, 10652 (2011); https://doi.org/10.1016/j.electacta.2011.04.107
B. Ren, Q.J. Huang, W.B. Cai, B.W. Mao, F.M. Liu and Z.Q. Tian, J. Electroanal. Chem., 415, 175 (1996); https://doi.org/10.1016/S0022-0728(96)01004-2
G. Blyholder, J. Phys. Chem. C, 79, 756 (1974); https://doi.org/10.1021/j100574a018
C.M. Lieber and N.S. Lewis, J. Am. Chem. Soc., 106, 5033 (1984); https://doi.org/10.1021/ja00329a082
Y. Deng and B.S. Yeo, ACS Catal., 7, 7873 (2017); https://doi.org/10.1021/acscatal.7b02561
S. Hu, B.J. Liu, J.M. Feng, C. Zong, K.Q. Lin, X. Wang, D.Y. Wu and B. Ren, J. Am. Chem. Soc., 140, 13680 (2018); https://doi.org/10.1021/jacs.8b06083
X.M. Lin, Y. Cui, Y.H. Xu, B. Ren and Z.Q. Tian, Anal. Bioanal. Chem., 394, 1729 (2009); https://doi.org/10.1007/s00216-009-761-5
K.G. Schmitt and A.A. Gewirth, J. Phys. Chem. C, 118, 17567 (2014); https://doi.org/10.1021/jp503598y
T.W.A.H.Y. Ichinohe, T. Wadayama and A. Hatta, J. Raman Spectrosc., 26, 335 (1995); https://doi.org/10.1002/jrs.1250260503
Y.-F. Huang, H.-P. Zhu, G.-K. Liu, D.-Y. Wu, B. Ren and Z.-Q. Tian, J. Am. Chem. Soc., 132, 9244 (2010); https://doi.org/10.1021/ja101107z
C.V. Raman and K.S. Krishnan, Nature, 121, 501 (1928); https://doi.org/10.1038/121501c0
Hind-Limb Reflexes in the Kitten: Properties of the Two-Neuron Arc, Nature, 187, 134 (1960); https://doi.org/10.1038/187134a0
M. Fleischmann, P.J. Hendra and A.J. McQuillan, Chem. Phys. Lett., 26, 163 (1974); https://doi.org/10.1016/0009-2614(74)85388-1
D.L. Jeanmaire and R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem., 84, 1 (1977); https://doi.org/10.1016/S0022-0728(77)80224-6
B. Pettinger and U. Tiedemann, J. Electroanal. Chem. Interfacial Electrochem., 228, 219 (1987); https://doi.org/10.1016/0022-0728(87)80108-0
H.D. Abruña, Electrochemical Interfaces: Modern Techniques for in situ Characterization, VCH: New York (1991).
C.V. Raman and K.S. Krishnan, Indian J. Phys., 2, 399 (1928).
H. Yoshio, K. Katsuhei and S. Shin, Chem. Lett., 14, 1695 (1985); https://doi.org/10.1246/cl.1985.1695
P.A. Christensen and A. Hamnet, Techniques and Mechanisms in Electrochemistry, Chapman & Hall: London (1993).
S.Z.Z.Y.X. Chen, S.Z. Zou, K.Q. Huang and Z.Q. Tian, J. Raman Spectrosc., 29, 749 (1998); https://doi.org/10.1002/(SICI)1097-4555(199808)29:8<749::AIDJRS285>3.0.CO;2-2
M.G. Albrecht and J.A. Creighton, J. Am. Chem. Soc., 99, 5215 (1977); https://doi.org/10.1021/ja00457a071
C. Pettenkofer and A. Otto, Surf. Sci., 151, 37 (1985); https://doi.org/10.1016/0039-6028(85)90453-4
D.L. Jeanmaire, M.R. Suchanski and R.P. Van Duyne, J. Am. Chem. Soc., 97, 1699 (1975); https://doi.org/10.1021/ja00840a013
J.A. Creighton, C.G. Blatchford and M.G. Albrecht, J. Chem. Soc., Faraday Trans. 2, 75, 790 (1979); https://doi.org/10.1039/F29797500790
R.P. Van Duyne, D.L. Jeanmaire and D.F. Shriver, Anal. Chem., 46, 213 (1974); https://doi.org/10.1021/ac60338a012
K. Aoki, H. Yamawaki, M. Sakashita, Y. Gotoh and K. Takemura, Science, 263, 354 (1994); https://doi.org/10.1126/science.263.5145.356
G.-K. Liu, B. Ren, D.-Y. Wu, S. Duan, J.-F. Li, J.-L. Yao, R.-A. Gu and Z.-Q. Tian, J. Phys. Chem. B, 110, 17498 (2006);
https://doi.org/10.1021/jp060485z
Y.X. Jiang, J.F. Li, D.Y. Wu, Z.L. Yang, B. Ren, J.W. Hu, Y.L. Chow and Z.Q. Tian, Chem. Commun., 4608 (2007); https://doi.org/10.1039/b711218a
I. Oda, H. Ogasawara and M. Ito, Langmuir, 12, 1094 (1996); https://doi.org/10.1021/la950167j
C. Muller, L. David, V. Chis and S.C. Pinzaru, Food Chem., 145, 814 (2014); https://doi.org/10.1016/j.foodchem.2013.08.136
M. Kubacková, S. Karácsonyi, L. Bilisics and R. Toman, Folia Microbiol., 23, 202 (1978); https://doi.org/10.1007/BF02876580
K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari and M.S. Feld, Phys. Rev. Lett., 78, 1667 (1997); https://doi.org/10.1103/PhysRevLett.78.1667
W. Wijaya, S. Pang, T.P. Labuza and L. He, J. Food Sci., 79, T743 (2014); https://doi.org/10.1111/1750-3841.12391
P.K. Roy, Y.F. Huang and S. Chattopadhyay, J. Biomed. Opt., 19, 011002 (2013); https://doi.org/10.1117/1.JBO.19.1.011002
Y. Cui, X.-S. Zheng, B. Ren, R. Wang, J. Zhang, N.-S. Xia and Z.-Q. Tian, Chem. Sci., 2, 1463 (2011); https://doi.org/10.1039/C1SC00242B
P. Verma, Chem. Rev., 117, 6447 (2017); https://doi.org/10.1021/acs.chemrev.6b00821
C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu and B. Man, J. Alloys Compd., 695, 1677 (2017); https://doi.org/10.1016/j.jallcom.2016.10.317
S.S.R. Dasary, P. Chandra Ray, A.K. Singh, T. Arbneshi, H. Yu and D. Senapati, Analyst, 138, 1195 (2013); https://doi.org/10.1039/c2an36293g
H.T. Temiz, I.H. Boyaci, I. Grabchev and U. Tamer, Spectrochim. Acta A Mol. Biomol. Spectrosc., 116, 339 (2013); https://doi.org/10.1016/j.saa.2013.07.071
Z. Zhang, S. Sheng, R. Wang and M. Sun, Anal. Chem., 88, 9328 (2016); https://doi.org/10.1021/acs.analchem.6b02093
G. Wang, R.J. Lipert, M. Jain, S. Kaur, S. Chakraboty, M.P. Torres, S.K. Batra, R.E. Brand and M.D. Porter, Anal. Chem., 83, 2554 (2011); https://doi.org/10.1021/ac102829b
H. Chon, S. Lee, S.Y. Yoon, S.I. Chang, D.W. Lim and J. Choo, Chem. Commun., 47, 12515 (2011); https://doi.org/10.1039/c1cc15707h
A.H. Deng, Z.P. Sun, G.Q. Zhang, J. Wu and T.Y. Wen, Laser Phys. Lett., 9, 636 (2012); https://doi.org/10.7452/lapl.201210052
J. Xu, J.W. Turner, M. Idso, S.V. Biryukov, L. Rognstad, H. Gong, V.L. Trainer, M.L. Wells, M.S. Strom and Q. Yu, Anal. Chem., 85, 2630 (2013); https://doi.org/10.1021/ac3021888
H. Zhou, D. Yang, N.P. Ivleva, N.E. Mircescu, S. Schubert, R. Niessner, A. Wieser and C. Haisch, Anal. Chem., 87, 6553 (2015); https://doi.org/10.1021/acs.analchem.5b01271
X. Wu, C. Xu, R.A. Tripp, Y.W. Huang and Y. Zhao, Analyst, 138, 3005 (2013); https://doi.org/10.1039/c3an00186e
S. Meisel, S. Stockel, P. Rosch and J. Popp, Food Microbiol., 38, 36 (2014); https://doi.org/10.1016/j.fm.2013.08.007
X. Lu, D.R. Samuelson, Y. Xu, H. Zhang, S. Wang, B.A. Rasco, J. Xu and M.E. Konkel, Anal. Chem., 85, 2320 (2013); https://doi.org/10.1021/ac303279u
F. Qiu, L.Ü. Xin-sheng and Y. Huang, Chin. Med. J., 120, 2260 (2007); https://doi.org/10.1097/00029330-200712020-00020
S. Kloß, B. Kampe, S. Sachse, P. Rosch, E. Straube, W. Pfister, M. Kiehntopf and J. Popp, Anal. Chem., 85, 9610 (2013); https://doi.org/10.1021/ac401806f
C. Fan, Z. Hu, A. Mustapha and M. Lin, Appl. Microbiol. Biotechnol., 92, 1053 (2011); https://doi.org/10.1007/s00253-011-3634-3
Y. Wang, S. Ravindranath and J. Irudayaraj, Anal. Bioanal. Chem., 399, 1271 (2011); https://doi.org/10.1007/s00216-010-4453-6
J. Sundaram, B. Park, Y. Kwon and K.C. Lawrence, Int. J. Food Microbiol., 167, 67 (2013); https://doi.org/10.1016/j.ijfoodmicro.2013.05.013
K. Yang, H.Z. Li, X. Zhu, J.Q. Su, B. Ren, Y.G. Zhu and L. Cui, Anal. Chem., 91, 6296 (2019); https://doi.org/10.1021/acs.analchem.9b01064
L.N. Quan, B.P. Rand, R.H. Friend, S.G. Mhaisalkar, T.W. Lee and E.H. Sargent, Chem. Rev., 119, 7444 (2019); https://doi.org/10.1021/acs.chemrev.9b00107
M. Autore, P. Li, I. Dolado, F.J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L.E. Hueso, P. Alonso-Gonzalez, J. Aizpurua, A.Y. Nikitin, S. Velez and R. Hillenbrand, Light Sci. Appl., 7, 17172 (2018); https://doi.org/10.1038/lsa.2017.172
Z. Cao, Z. Li, Y. Zhao, Y. Song and J. Lu, Anal. Chim. Acta, 557, 152 (2006); https://doi.org/10.1016/j.aca.2005.10.048
K. Lee, V.P. Drachev and J. Irudayaraj, ACS Nano, 5, 2109 (2011); https://doi.org/10.1021/nn1030862
S.L. Hennigan, J.D. Driskell, N. Ferguson-Noel, R.A. Dluhy, Y. Zhao, R.A. Tripp and D.C. Krause, Appl. Environ. Microbiol., 78, 1930 (2012); https://doi.org/10.1128/AEM.07419-11
P. Cambraia Lopes, J. Biomed. Opt., 16, 127001 (2011); https://doi.org/10.1117/1.3658756
Y.C. Cao, Science, 297, 1536 (2002); https://doi.org/10.1126/science.297.5586.1536
I. Ijjaali, A.D. McFarland, C.L. Haynes, R.P. Van Duyne and J.A. Ibers, J. Solid State Chem., 172, 127 (2003); https://doi.org/10.1016/S0022-4596(02)00168-8
S. Liu, S. Wan, M. Chen and M. Sun, J. Raman Spectrosc., 39, 1170 (2008); https://doi.org/10.1002/jrs.1958
Y.C. Yang, H. Yu, D.W. Xiao, H. Liu, Q. Hu, B. Huang, W.J. Liao and W.F. Huang, J. Microbiol. Methods, 77, 202 (2009); https://doi.org/10.1016/j.mimet.2009.02.004
Y. Xie, Y. Li, L. Niu, H. Wang, H. Qian and W. Yao, Talanta, 100, 32 (2012); https://doi.org/10.1016/j.talanta.2012.07.080
M.-M. Liang, Y.-H. Wang, R. Shao, W.-M. Yang, H. Zhang, H. Zhang, Z.-L. Yang, J.-F. Li and Z.-Q. Tian, Electrochem. Commun., 81, 38 (2017); https://doi.org/10.1016/j.elecom.2017.05.022
J. Cailletaud, C. De Bleye, E. Dumont, P.Y. Sacre, L. Netchacovitch, Y. Gut, M. Boiret, Y.M. Ginot, P. Hubert and E. Ziemons, J. Pharm. Biomed. Anal., 147, 458 (2018); https://doi.org/10.1016/j.jpba.2017.06.056