Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Temperature on Gravity Assisted Synthesis of Carbon Nanotubes by Spray Pyrolysis
Corresponding Author(s) : P. Mahalingam
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Carbon nanotubes were prepared along the gravity direction in a spray pyrolysis setup over the silica supported Fe-Co-Ni catalyst. The silica supported Fe-Co-Ni catalyst coated by jet nebulized spray pyrolysis method over copper strip was inverted to face downward, so that carbon nanotubes can be prepared along the direction of gravity. From the point of view of green chemistry, instead of commonly used hydrocarbons, a plant based natural precursor, pine oil is used as carbon precursor for preparation of carbon nanotubes. The effect of temperature on yield and morphology of carbon nanotubes grown along gravity was studied. The yield of carbon nanotubes was calculated as mass percentage of catalyst and support. The carbon nanotubes were characterized using XRD, SEM, Raman and TGA techniques. The carbon deposit obtained at 650 ºC contains multi-walled carbon nanotubes in larger quantity with very less amorphous carbon. A narrow, lengthy and well graphitized multi-walled carbon nanotubes were formed when the carbon nanotubes grow along the gravity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Gupta, S.M. Gupta and S.K. Sharma, Carbon Lett., 29, 419 (2019); https://doi.org/10.1007/s42823-019-00068-2
- Y. Wang, C. Pan, W. Chu, A.K. Vipin and L. Sun, Nanomaterials, 9, 439 (2019); https://doi.org/10.3390/nano9030439
- L. Sun, X. Wang, Y. Wang and Q. Zhang, Carbon, 122, 462 (2017); https://doi.org/10.1016/j.carbon.2017.07.006
- B. Murugesan, A. Sivakumar, A. Loganathan and P. Sivakumar, J. Taiwan Inst. Chem. Eng., 71, 364 (2017); https://doi.org/10.1016/j.jtice.2016.11.020
- S. Karthikeyan, P. Mahalingam and M. Karthik, E-J. Chem., 6, 1 (2009); https://doi.org/10.1155/2009/756410
- Y. Wang and J.T.W. Yeow, Sensors, 2009, 493904 (2009); https://doi.org/10.1155/2009/493904
- C. Öncel and Y. Yürüm, Fuller. Nanotub. Carbon Nanostruct., 14, 17 (2006); https://doi.org/10.1080/15363830500538441
- N. Sethupathi, P. Thirunavukkarasu, V.S. Vidhya, R. Thangamuthu, G.V.M. Kiruthika, K. Perumal, H.C. Bajaj and M. Jayachandran, J. Mater. Sci. Mater. Electron., 23, 1087 (2012); https://doi.org/10.1007/s10854-011-0553-0
- C.M. Yeh, M.Y. Chen, J.S. Syu, J.-Y. Gan and J. Hwang, Appl. Phys. Lett., 89, 033117 (2006); https://doi.org/10.1063/1.2228068
- C.M. Yeh, M.Y. Chen, J.-Y. Gan, J. Hwang, C.D. Lin, T.Y. Chao and Y.T. Cheng, Nanotechnology, 18, 145613 (2007); https://doi.org/10.1088/0957-4484/18/14/145613
- S. Paul and S.K. Samdarshi, N. Carbon Mater., 26, 85 (2011); https://doi.org/10.1016/S1872-5805(11)60068-1
- A. Annu, B. Bhattacharya, P.K. Singh, P.K. Shukla and H.-W. Rhee, J. Alloys Compd., 691, 970 (2017); https://doi.org/10.1016/j.jallcom.2016.08.246
- Q. Li, H. Yan, J. Zhang and Z. Liu, Carbon, 42, 829 (2004); https://doi.org/10.1016/j.carbon.2004.01.070
- A. Yahyazadeh and B. Khoshandam, Results Phys., 7, 3826 (2007); https://doi.org/10.1016/j.rinp.2017.10.001
- G. Zhong, S. Hofmann, F. Yan, H. Telg, J. Warner, D. Eder, C. Thomsen, W. Milne and J. Robertson, J. Phys. Chem. C, 113, 17321 (2009); https://doi.org/10.1021/jp905134b
- E.D. Dikio, N.D. Shooto, F.T. Thema and A.M. Farah, Chem. Sci. Trans., 2, 1160 (2013); https://doi.org/10.7598/cst2013.519
- V. Georgakilas, J.A. Perman, J. Tucek and R. Zboril, Chem. Rev., 115, 4744 (2015); https://doi.org/10.1021/cr500304f
References
N. Gupta, S.M. Gupta and S.K. Sharma, Carbon Lett., 29, 419 (2019); https://doi.org/10.1007/s42823-019-00068-2
Y. Wang, C. Pan, W. Chu, A.K. Vipin and L. Sun, Nanomaterials, 9, 439 (2019); https://doi.org/10.3390/nano9030439
L. Sun, X. Wang, Y. Wang and Q. Zhang, Carbon, 122, 462 (2017); https://doi.org/10.1016/j.carbon.2017.07.006
B. Murugesan, A. Sivakumar, A. Loganathan and P. Sivakumar, J. Taiwan Inst. Chem. Eng., 71, 364 (2017); https://doi.org/10.1016/j.jtice.2016.11.020
S. Karthikeyan, P. Mahalingam and M. Karthik, E-J. Chem., 6, 1 (2009); https://doi.org/10.1155/2009/756410
Y. Wang and J.T.W. Yeow, Sensors, 2009, 493904 (2009); https://doi.org/10.1155/2009/493904
C. Öncel and Y. Yürüm, Fuller. Nanotub. Carbon Nanostruct., 14, 17 (2006); https://doi.org/10.1080/15363830500538441
N. Sethupathi, P. Thirunavukkarasu, V.S. Vidhya, R. Thangamuthu, G.V.M. Kiruthika, K. Perumal, H.C. Bajaj and M. Jayachandran, J. Mater. Sci. Mater. Electron., 23, 1087 (2012); https://doi.org/10.1007/s10854-011-0553-0
C.M. Yeh, M.Y. Chen, J.S. Syu, J.-Y. Gan and J. Hwang, Appl. Phys. Lett., 89, 033117 (2006); https://doi.org/10.1063/1.2228068
C.M. Yeh, M.Y. Chen, J.-Y. Gan, J. Hwang, C.D. Lin, T.Y. Chao and Y.T. Cheng, Nanotechnology, 18, 145613 (2007); https://doi.org/10.1088/0957-4484/18/14/145613
S. Paul and S.K. Samdarshi, N. Carbon Mater., 26, 85 (2011); https://doi.org/10.1016/S1872-5805(11)60068-1
A. Annu, B. Bhattacharya, P.K. Singh, P.K. Shukla and H.-W. Rhee, J. Alloys Compd., 691, 970 (2017); https://doi.org/10.1016/j.jallcom.2016.08.246
Q. Li, H. Yan, J. Zhang and Z. Liu, Carbon, 42, 829 (2004); https://doi.org/10.1016/j.carbon.2004.01.070
A. Yahyazadeh and B. Khoshandam, Results Phys., 7, 3826 (2007); https://doi.org/10.1016/j.rinp.2017.10.001
G. Zhong, S. Hofmann, F. Yan, H. Telg, J. Warner, D. Eder, C. Thomsen, W. Milne and J. Robertson, J. Phys. Chem. C, 113, 17321 (2009); https://doi.org/10.1021/jp905134b
E.D. Dikio, N.D. Shooto, F.T. Thema and A.M. Farah, Chem. Sci. Trans., 2, 1160 (2013); https://doi.org/10.7598/cst2013.519
V. Georgakilas, J.A. Perman, J. Tucek and R. Zboril, Chem. Rev., 115, 4744 (2015); https://doi.org/10.1021/cr500304f