Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Flexible Chain on Mesomorphic Properties of Alkyloxy Substituted 4-Chloroazobenzene Liquid Crystals
Corresponding Author(s) : Tariqul Hasan
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Three rod-shaped alkyloxy substituted 4-chloroazobenzene liquid crystals, 1-(4-chlorophenyl)-2-[4-(alkyloxy)phenyl]diazene (hexayl, octyl and nonyl as flexible oxyalkyl chain) have been synthesized by diazotization of p-chloroaniline with phenol and subsequently performed etherification reaction with different alkyl bromides. The structures of the substituted 4-chloroazobenzene liquid crystals have been characterized by spectroscopic methods. The mesomorphic properties of the liquid crystals were examined by polarizing optical microscope (POM) and differential scanning calorimetry (DSC). All the oxyalkyl homologues of chloro substituted azobenzene showed enantiotropic smectic A (SmA) mesophase, which was understood clearly by the texture of the compounds employing polarizing optical microscope (POM) analysis. During heating scan in DSC analyses melting points, SmA-isotropic temperature and enthalphy changes associated with SmA-isotropic transition showed a remarkable impact on the spacer length of 4-chloro azobenzene derivatives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.P. Shibaev and A.Yu. Bobrovsky, Russian Chem. Rev., 86, 1024 (2017); https://doi.org/10.1070/RCR4747
- J. Yan, J. Lin, Q. Li and R.-Z. Li, J. Appl. Phys., 125, 024501 (2019); https://doi.org/10.1063/1.5081766
- S.J. Woltman, G.D. Jay and G.P. Crawford, Nature Mater., 6, 929 (2007); https://doi.org/10.1038/nmat2010
- S.A. Hudson and P.M. Maitlis, Chem. Rev., 93, 861 (1993); https://doi.org/10.1021/cr00019a002
- N. Kapernaum, F. Knecht, C.S. Hartley, J.C. Roberts, R.P. Lemieux and F. Giesselmann, Beilstein J. Org. Chem., 8, 1118 (2012); https://doi.org/10.3762/bjoc.8.124
- J. Romiszewski, P.T. Zita, J. Mieczkowski and E. Gorecka, New J. Chem., 38, 2927 (2014); https://doi.org/10.1039/C4NJ00298A
- A. Tavares, O.M.S. Ritter, U.B. Vasconcelos, B.C. Arruda, A. Schrader, P.H. Schneider and A.A. Merlo, Liq. Cryst., 37, 159 (2010); https://doi.org/10.1080/02678290903432098
- D.S. Rampon, F.S. Rodembusch, P.F.B. Gonçalves, R.V. Lourega, A.A. Merlo and P.H. Schneider, J. Braz. Chem. Soc., 21, 2100 (2010); https://doi.org/10.1590/S0103-50532010001100011
- D.J. Timmons, A.J. Jordan, A.A. Kirchon, N.S. Murthy, T.J. Siemers, D.P. Harrison and C. Slebodick, Liq. Cryst., 44, 1436 (2017); https://doi.org/10.1080/02678292.2017.1281450
- Y. Zhu and X. Wang, Polym. Chem., 4, 5108 (2013); https://doi.org/10.1039/c3py00757j
- A. Natansohn and P. Rochon, Chem. Rev., 102, 4139 (2002); https://doi.org/10.1021/cr970155y
- H. Rau, Eds.: J.F. Rabeck, Photochemistry and Photophysics, Boca Raton: CRC Press, vol. 11, p. 119 (1990).
- S. Hernanderz-Ainsa, R. Alcala, J. Barbera, M. Marcos, C. Sanchez and J.L. Serrano, Eur. Polym. J., 47, 311 (2011); https://doi.org/10.1016/j.eurpolymj.2010.11.013
- P. Rochon, E. Batalla and A. Natanson, Appl. Phys. Lett., 66, 136 (1995); https://doi.org/10.1063/1.113541
- D.Y. Kim, S.K. Tripathy, L. Li and J. Kumar, J. Appl. Phys. Lett., 66, 1166 (1995); https://doi.org/10.1063/1.113845
- H.A. Haus, J. Opt. Soc. Am. B, 18, 1777 (2001); https://doi.org/10.1364/JOSAB.18.001777
- M.S. Ho, A. Natansohn, C. Barrett and P. Rochon, Can. J. Chem., 73, 1773 (1995); https://doi.org/10.1139/v95-218
- K. Ichimura, Chem. Rev., 100, 1847 (2000); https://doi.org/10.1021/cr980079e
- T. Yamaoka, Y. Makita, H. Sasatani, S.I. Kim and Y. Kimura, J. Control. Rel., 66, 187 (2000); https://doi.org/10.1016/S0168-3659(99)00270-9
- P.J. Collings and H. Michael, Introduction to Liquid Crystals Chemistry and Physics, London, UK, Taylor & Francis Ltd., edn 1 (1997).
- G. Hegde, G. Shanker, S.M. Gan, A.R. Yuvaraj, S. Mahmood and U.K. Mandal, Liq. Cryst., 43, 1578 (2016); https://doi.org/10.1080/02678292.2016.1189001
- K. Krohn, M. John and E.I. Demikhov, Russ. Chem. Bull. (Int. Ed.), 50, 1248 (2001); https://doi.org/10.1023/A:1014062924656
- S. Hernandez-Ainsa, R. Alcal, J. Barbera, M. Marcos, C. Sanchez and J.L. Serrano, Macromolecules, 43, 2660 (2010); https://doi.org/10.1021/ma902766j
- M.H. Li, P. Auroy and P. Keller, Liq. Cryst., 27, 1497 (2000); https://doi.org/10.1080/026782900750018663
- M. Wang, L.X. Guo, B.P. Lin, X.Q. Zhang, Y. Sun and H. Yang, Liq. Cryst., 43, 1626 (2016); https://doi.org/10.1080/02678292.2016.1191686
- Organic Syntheses Collection, vol. 3, p.140 (1955); vol. 25, p. 9 (1945).
- T. Itahara and H. Tamura, Mol. Crys. Liq. Cryst., 501, 94 (2009); https://doi.org/10.1080/15421400802697665
- S.A.A. Sanches, W.C. Costa, I.H. Bechtold, R.A.P. Halfen, A.A. Merlo and L.F. Campo, Liq. Cryst., 46, 655 (2019); https://doi.org/10.1080/02678292.2018.1517226
- W.K. Lee, K.N. Kim, F.A. Achard and J.I. Jin, J. Mater. Chem., 16, 2289 (2006); https://doi.org/10.1039/b516141j
References
V.P. Shibaev and A.Yu. Bobrovsky, Russian Chem. Rev., 86, 1024 (2017); https://doi.org/10.1070/RCR4747
J. Yan, J. Lin, Q. Li and R.-Z. Li, J. Appl. Phys., 125, 024501 (2019); https://doi.org/10.1063/1.5081766
S.J. Woltman, G.D. Jay and G.P. Crawford, Nature Mater., 6, 929 (2007); https://doi.org/10.1038/nmat2010
S.A. Hudson and P.M. Maitlis, Chem. Rev., 93, 861 (1993); https://doi.org/10.1021/cr00019a002
N. Kapernaum, F. Knecht, C.S. Hartley, J.C. Roberts, R.P. Lemieux and F. Giesselmann, Beilstein J. Org. Chem., 8, 1118 (2012); https://doi.org/10.3762/bjoc.8.124
J. Romiszewski, P.T. Zita, J. Mieczkowski and E. Gorecka, New J. Chem., 38, 2927 (2014); https://doi.org/10.1039/C4NJ00298A
A. Tavares, O.M.S. Ritter, U.B. Vasconcelos, B.C. Arruda, A. Schrader, P.H. Schneider and A.A. Merlo, Liq. Cryst., 37, 159 (2010); https://doi.org/10.1080/02678290903432098
D.S. Rampon, F.S. Rodembusch, P.F.B. Gonçalves, R.V. Lourega, A.A. Merlo and P.H. Schneider, J. Braz. Chem. Soc., 21, 2100 (2010); https://doi.org/10.1590/S0103-50532010001100011
D.J. Timmons, A.J. Jordan, A.A. Kirchon, N.S. Murthy, T.J. Siemers, D.P. Harrison and C. Slebodick, Liq. Cryst., 44, 1436 (2017); https://doi.org/10.1080/02678292.2017.1281450
Y. Zhu and X. Wang, Polym. Chem., 4, 5108 (2013); https://doi.org/10.1039/c3py00757j
A. Natansohn and P. Rochon, Chem. Rev., 102, 4139 (2002); https://doi.org/10.1021/cr970155y
H. Rau, Eds.: J.F. Rabeck, Photochemistry and Photophysics, Boca Raton: CRC Press, vol. 11, p. 119 (1990).
S. Hernanderz-Ainsa, R. Alcala, J. Barbera, M. Marcos, C. Sanchez and J.L. Serrano, Eur. Polym. J., 47, 311 (2011); https://doi.org/10.1016/j.eurpolymj.2010.11.013
P. Rochon, E. Batalla and A. Natanson, Appl. Phys. Lett., 66, 136 (1995); https://doi.org/10.1063/1.113541
D.Y. Kim, S.K. Tripathy, L. Li and J. Kumar, J. Appl. Phys. Lett., 66, 1166 (1995); https://doi.org/10.1063/1.113845
H.A. Haus, J. Opt. Soc. Am. B, 18, 1777 (2001); https://doi.org/10.1364/JOSAB.18.001777
M.S. Ho, A. Natansohn, C. Barrett and P. Rochon, Can. J. Chem., 73, 1773 (1995); https://doi.org/10.1139/v95-218
K. Ichimura, Chem. Rev., 100, 1847 (2000); https://doi.org/10.1021/cr980079e
T. Yamaoka, Y. Makita, H. Sasatani, S.I. Kim and Y. Kimura, J. Control. Rel., 66, 187 (2000); https://doi.org/10.1016/S0168-3659(99)00270-9
P.J. Collings and H. Michael, Introduction to Liquid Crystals Chemistry and Physics, London, UK, Taylor & Francis Ltd., edn 1 (1997).
G. Hegde, G. Shanker, S.M. Gan, A.R. Yuvaraj, S. Mahmood and U.K. Mandal, Liq. Cryst., 43, 1578 (2016); https://doi.org/10.1080/02678292.2016.1189001
K. Krohn, M. John and E.I. Demikhov, Russ. Chem. Bull. (Int. Ed.), 50, 1248 (2001); https://doi.org/10.1023/A:1014062924656
S. Hernandez-Ainsa, R. Alcal, J. Barbera, M. Marcos, C. Sanchez and J.L. Serrano, Macromolecules, 43, 2660 (2010); https://doi.org/10.1021/ma902766j
M.H. Li, P. Auroy and P. Keller, Liq. Cryst., 27, 1497 (2000); https://doi.org/10.1080/026782900750018663
M. Wang, L.X. Guo, B.P. Lin, X.Q. Zhang, Y. Sun and H. Yang, Liq. Cryst., 43, 1626 (2016); https://doi.org/10.1080/02678292.2016.1191686
Organic Syntheses Collection, vol. 3, p.140 (1955); vol. 25, p. 9 (1945).
T. Itahara and H. Tamura, Mol. Crys. Liq. Cryst., 501, 94 (2009); https://doi.org/10.1080/15421400802697665
S.A.A. Sanches, W.C. Costa, I.H. Bechtold, R.A.P. Halfen, A.A. Merlo and L.F. Campo, Liq. Cryst., 46, 655 (2019); https://doi.org/10.1080/02678292.2018.1517226
W.K. Lee, K.N. Kim, F.A. Achard and J.I. Jin, J. Mater. Chem., 16, 2289 (2006); https://doi.org/10.1039/b516141j