Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Zero Valent Iron (ZVI) using Tea Leaves Extract and its Application as Fenton like Catalyst for Textile Dyes Removal
Corresponding Author(s) : Diana Rakhmawaty Eddy
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
This study aims to develop an alternative method in the green synthesis of zero valent iron (ZVI) from tea leaves extract and its application as a Fenton catalyst for textile dyes removal. Tea leaves extract having high polyphenolic contents were used as reducing agents in this study and the ZVI obtained from them was characterized by UV-VIS, SEM-EDS, FTIR, PSA and XRD techniques. The synthesized zero valent iron (ZVI) was utilized as a Fenton like catalyst for textile dyes removal. The results showed that this system was highly efficient regarding the dyes removal of about 95.96% using 80 mg/L ZVI. Moreover, using 100 mg/L ZVI, the COD number reduced to 94.68%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Hassani, A. Khataee, S. Karaca, M. Karaca and M. Kiransan, J. Environ. Chem. Eng., 3, 2738 (2015); https://doi.org/10.1016/j.jece.2015.09.014
- S. Agarwal, I. Tyagi, V.K. Gupta, M. Dastkhoon, M. Ghaedi, F. Yousefi and A. Asfaram, J. Mol. Liq., 219, 332 (2016); https://doi.org/10.1016/j.molliq.2016.02.100
- V.P. Kasperchik, A. Yaskevich and A. Bildyukevich, Petrol. Chem., 52, 545 (2012); https://doi.org/10.1134/S0965544112070079
- C.S.D. Rodrigues, L.M. Madeira and R.A.R. Boaventura, J. Environ. Technol., 34, 719 (2013); https://doi.org/10.1080/09593330.2012.715679
- C.-H. Tung, S.-Y. Shen, J.-H. Chang, Y.-M. Hsu and Y.-C. Lai, Sep. Purif. Technol., 117, 131 (2013); https://doi.org/10.1016/j.seppur.2013.07.028
- W. Ye, J. Lin, R. Borrego, D. Chen, A. Sotto, P. Luis, M. Liu, S. Zhao, C.Y. Tang and B. Van der Bruggen, Sep. Purif. Technol., 197, 27 (2018); https://doi.org/10.1016/j.seppur.2017.12.045
- S.M. Noor, N. Ahmad, M.A. Khattak, M.S. Khan, A. Mukhtar, S. Kazi, S. Badshah and R. Khan, J. Taibah Univ. Sci., 11, 949 (2017); https://doi.org/10.1016/j.jtusci.2016.11.005
- F. Li, J. Huang, Q. Xia, M. Lou, B. Yang, Q. Tian and Y. Liu, Sep. Purif. Technol., 195, 83 (2018); https://doi.org/10.1016/j.seppur.2017.11.058
- F. Sun, Q. Zeng, W. Tian, Y. Zhu and W. Jiang, J. Environ. Chem. Eng., 7, 103011 (2019); https://doi.org/10.1016/j.jece.2019.103011
- P.O. Bankole, A.A. Adekunle and S.P. Govindwar, J. Environ. Chem. Eng., 6, 1589 (2018); https://doi.org/10.1016/j.jece.2018.01.069
- Y. Chen, L. Feng, H. Li, Y. Wang, G. Chen and Q. Zhang, Bioresour. Technol., 250, 650 (2018); https://doi.org/10.1016/j.biortech.2017.11.092
- S. Krishnan, H. Rawindran, C.M. Sinnathambi and J.W. Lim, IOP Conf. Series: Mater. Sci. Eng., 206, 012089 (2017); https://doi.org/10.1088/1757-899X/206/1/012089
- A.B. Seabra, P. Haddad and N. Duran, IET Nanobiotechnol., 7, 90 (2013); https://doi.org/10.1049/iet-nbt.2012.0047
- M. Klavarioti, D. Mantzavinos and D. Kassinos, Environ. Int., 35, 402 (2009); https://doi.org/10.1016/j.envint.2008.07.009
- D. Blowes, C.J. Ptacek, S.G. Benner, C.W. McRae, T.A. Bennett and R.W. Puls, J. Contam. Hydrol., 45, 123 (2000); https://doi.org/10.1016/S0169-7722(00)00122-4
- M. Kallel, C. Belaid, T. Mechichi, M. Ksibi and B. Elleuch, Chem. Eng. J., 150, 391 (2009); https://doi.org/10.1016/j.cej.2009.01.017
- X. Qu, P.J.J. Alvarez and Q. Li, J. Water Res., 47, 3931 (2013); https://doi.org/10.1016/j.watres.2012.09.058
- R.A. Crane and T.B. Scott, J. Hazard. Mater., 211-212, 112 (2012); https://doi.org/10.1016/j.jhazmat.2011.11.073
- A.C. Kucuk and O.A. Urucu, React. Funct. Polym., 140, 22 (2019); https://doi.org/10.1016/j.reactfunctpolym.2019.04.011
- N. Efecan, T. Shahwan, A.E. Eroglu and I. Lieberwirth, Desalination, 249, 1048 (2009); https://doi.org/10.1016/j.desal.2009.06.054
- S. Bae, S. Gim, H. Kim and K. Hanna, Appl. Catal. B, 182, 541 (2016); https://doi.org/10.1016/j.apcatb.2015.10.006
- M. Arshadi, M. Soleymanzadeh, J.W.L. Salvacion and F. SalimiVahid, J. Colloid Interface Sci., 426, 241 (2014); https://doi.org/10.1016/j.jcis.2014.04.014
- X.-Q. Li and W.-X. Zhang, J. Phys. Chem. C, 111, 6939 (2007); https://doi.org/10.1021/jp0702189
- M.E. Haddad, A. Regti, M.R. Laamari, R. Mamouni and N. Saffaj, J. Mater. Environ. Sci., 5, 667 (2014).
- Y. Nie, C. Hu, L. Zhou, J. Qu, Q. Wei and D. Wang, J. Hazard. Mater., 173, 474 (2010); https://doi.org/10.1016/j.jhazmat.2009.08.109
- A.S. Stasinakis, Glob. NEST J., 10, 376 (2008).
- V. Kecic, Ð. Kerkez, M. Prica, O. Lu•anin, M. Beèelic-Tomin, D.T. Pilipovic and B. Dalmacija, J. Clean. Prod., 202, 65 (2018); https://doi.org/10.1016/j.jclepro.2018.08.117
- C.R. Klauck, A. Giacobbo, E.D.L. de Oliveira, L.B. da Silva and M.A.S. Rodrigues, J. Environ. Chem. Eng., 5, 6188 (2017); https://doi.org/10.1016/j.jece.2017.11.058
- A. Fernandes, M. Gagol, P. Makos, J.A. Khan and G. Boczkaj, Sep. Purif. Technol., 224, 1 (2019); https://doi.org/10.1016/j.seppur.2019.05.012
- S. Jiménez, M. Andreozzi, M.M. Micó, M.G. Álvarez and S. Contreras, Sci. Total Environ., 666, 12 (2019); https://doi.org/10.1016/j.scitotenv.2019.02.128
- G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda and R.S. Varma, J. Mater. Chem., 19, 8671 (2009); https://doi.org/10.1039/b909148c
- S. Machado, S.L. Pinto, J.P. Grosso, H.P.A. Nouws, J.T. Albergaria and C. Delerue-Matos, Sci. Total Environ., 445-446, 1 (2013); https://doi.org/10.1016/j.scitotenv.2012.12.033
- Z. Yücesoy-Özkan, F.a Sagirkaya, M. Terzi, M.M. Rezayee and E. Erdim, Proceedings, 2, 658 (2018); https://doi.org/10.3390/proceedings2110658
- B. Desalegn, M. Megharaj, Z. Chen and R. Naidu, Heliyon, 5, e01750 (2019); https://doi.org/10.1016/j.heliyon.2019.e01750
- T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A.E. Eroglu, T.B. Scott and K.R. Hallam, Chem. Eng. J., 172, 258 (2011); https://doi.org/10.1016/j.cej.2011.05.103
- H.M.P.C. Kumarihami and K.J. Song, J. Korean Tea Soc., 24, 79 (2018); https://doi.org/10.29225/jkts.2018.24.3.79
- F. Muhammad, M. Xia, S. Li, X. Yu, Y. Mao, F. Muhammad, X. Huang, B. Jiao, L. Yu and D. Li, J. Clean. Prod., 234, 381 (2019); https://doi.org/10.1016/j.jclepro.2019.06.004
- T. Wang, J. Lin, Z. Chen, M. Megharaj and R. Naidu, J. Clean. Prod., 83, 413 (2014); https://doi.org/10.1016/j.jclepro.2014.07.006
- K. Mohan Kumar, B.K. Mandal, K. Siva Kumar, P. Sreedhara Reddy and B. Sreedhar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 102, 128 (2013); https://doi.org/10.1016/j.saa.2012.10.015
- R.K. Das, B.B. Borthakur and U. Bora, Mater. Lett., 64, 1445 (2010); https://doi.org/10.1016/j.matlet.2010.03.051
- R. Yuvakkumar, V. Elango, V. Rajendran and N. Kannan, Digest J. Nanomater. Biostruct., 6, 1771 (2011).
- Y. Yi, G. Tu, P.E. Tsang, S. Xiao and Z. Fang, Mater. Lett., 234, 388 (2019); https://doi.org/10.1016/j.matlet.2018.09.137
References
A. Hassani, A. Khataee, S. Karaca, M. Karaca and M. Kiransan, J. Environ. Chem. Eng., 3, 2738 (2015); https://doi.org/10.1016/j.jece.2015.09.014
S. Agarwal, I. Tyagi, V.K. Gupta, M. Dastkhoon, M. Ghaedi, F. Yousefi and A. Asfaram, J. Mol. Liq., 219, 332 (2016); https://doi.org/10.1016/j.molliq.2016.02.100
V.P. Kasperchik, A. Yaskevich and A. Bildyukevich, Petrol. Chem., 52, 545 (2012); https://doi.org/10.1134/S0965544112070079
C.S.D. Rodrigues, L.M. Madeira and R.A.R. Boaventura, J. Environ. Technol., 34, 719 (2013); https://doi.org/10.1080/09593330.2012.715679
C.-H. Tung, S.-Y. Shen, J.-H. Chang, Y.-M. Hsu and Y.-C. Lai, Sep. Purif. Technol., 117, 131 (2013); https://doi.org/10.1016/j.seppur.2013.07.028
W. Ye, J. Lin, R. Borrego, D. Chen, A. Sotto, P. Luis, M. Liu, S. Zhao, C.Y. Tang and B. Van der Bruggen, Sep. Purif. Technol., 197, 27 (2018); https://doi.org/10.1016/j.seppur.2017.12.045
S.M. Noor, N. Ahmad, M.A. Khattak, M.S. Khan, A. Mukhtar, S. Kazi, S. Badshah and R. Khan, J. Taibah Univ. Sci., 11, 949 (2017); https://doi.org/10.1016/j.jtusci.2016.11.005
F. Li, J. Huang, Q. Xia, M. Lou, B. Yang, Q. Tian and Y. Liu, Sep. Purif. Technol., 195, 83 (2018); https://doi.org/10.1016/j.seppur.2017.11.058
F. Sun, Q. Zeng, W. Tian, Y. Zhu and W. Jiang, J. Environ. Chem. Eng., 7, 103011 (2019); https://doi.org/10.1016/j.jece.2019.103011
P.O. Bankole, A.A. Adekunle and S.P. Govindwar, J. Environ. Chem. Eng., 6, 1589 (2018); https://doi.org/10.1016/j.jece.2018.01.069
Y. Chen, L. Feng, H. Li, Y. Wang, G. Chen and Q. Zhang, Bioresour. Technol., 250, 650 (2018); https://doi.org/10.1016/j.biortech.2017.11.092
S. Krishnan, H. Rawindran, C.M. Sinnathambi and J.W. Lim, IOP Conf. Series: Mater. Sci. Eng., 206, 012089 (2017); https://doi.org/10.1088/1757-899X/206/1/012089
A.B. Seabra, P. Haddad and N. Duran, IET Nanobiotechnol., 7, 90 (2013); https://doi.org/10.1049/iet-nbt.2012.0047
M. Klavarioti, D. Mantzavinos and D. Kassinos, Environ. Int., 35, 402 (2009); https://doi.org/10.1016/j.envint.2008.07.009
D. Blowes, C.J. Ptacek, S.G. Benner, C.W. McRae, T.A. Bennett and R.W. Puls, J. Contam. Hydrol., 45, 123 (2000); https://doi.org/10.1016/S0169-7722(00)00122-4
M. Kallel, C. Belaid, T. Mechichi, M. Ksibi and B. Elleuch, Chem. Eng. J., 150, 391 (2009); https://doi.org/10.1016/j.cej.2009.01.017
X. Qu, P.J.J. Alvarez and Q. Li, J. Water Res., 47, 3931 (2013); https://doi.org/10.1016/j.watres.2012.09.058
R.A. Crane and T.B. Scott, J. Hazard. Mater., 211-212, 112 (2012); https://doi.org/10.1016/j.jhazmat.2011.11.073
A.C. Kucuk and O.A. Urucu, React. Funct. Polym., 140, 22 (2019); https://doi.org/10.1016/j.reactfunctpolym.2019.04.011
N. Efecan, T. Shahwan, A.E. Eroglu and I. Lieberwirth, Desalination, 249, 1048 (2009); https://doi.org/10.1016/j.desal.2009.06.054
S. Bae, S. Gim, H. Kim and K. Hanna, Appl. Catal. B, 182, 541 (2016); https://doi.org/10.1016/j.apcatb.2015.10.006
M. Arshadi, M. Soleymanzadeh, J.W.L. Salvacion and F. SalimiVahid, J. Colloid Interface Sci., 426, 241 (2014); https://doi.org/10.1016/j.jcis.2014.04.014
X.-Q. Li and W.-X. Zhang, J. Phys. Chem. C, 111, 6939 (2007); https://doi.org/10.1021/jp0702189
M.E. Haddad, A. Regti, M.R. Laamari, R. Mamouni and N. Saffaj, J. Mater. Environ. Sci., 5, 667 (2014).
Y. Nie, C. Hu, L. Zhou, J. Qu, Q. Wei and D. Wang, J. Hazard. Mater., 173, 474 (2010); https://doi.org/10.1016/j.jhazmat.2009.08.109
A.S. Stasinakis, Glob. NEST J., 10, 376 (2008).
V. Kecic, Ð. Kerkez, M. Prica, O. Lu•anin, M. Beèelic-Tomin, D.T. Pilipovic and B. Dalmacija, J. Clean. Prod., 202, 65 (2018); https://doi.org/10.1016/j.jclepro.2018.08.117
C.R. Klauck, A. Giacobbo, E.D.L. de Oliveira, L.B. da Silva and M.A.S. Rodrigues, J. Environ. Chem. Eng., 5, 6188 (2017); https://doi.org/10.1016/j.jece.2017.11.058
A. Fernandes, M. Gagol, P. Makos, J.A. Khan and G. Boczkaj, Sep. Purif. Technol., 224, 1 (2019); https://doi.org/10.1016/j.seppur.2019.05.012
S. Jiménez, M. Andreozzi, M.M. Micó, M.G. Álvarez and S. Contreras, Sci. Total Environ., 666, 12 (2019); https://doi.org/10.1016/j.scitotenv.2019.02.128
G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda and R.S. Varma, J. Mater. Chem., 19, 8671 (2009); https://doi.org/10.1039/b909148c
S. Machado, S.L. Pinto, J.P. Grosso, H.P.A. Nouws, J.T. Albergaria and C. Delerue-Matos, Sci. Total Environ., 445-446, 1 (2013); https://doi.org/10.1016/j.scitotenv.2012.12.033
Z. Yücesoy-Özkan, F.a Sagirkaya, M. Terzi, M.M. Rezayee and E. Erdim, Proceedings, 2, 658 (2018); https://doi.org/10.3390/proceedings2110658
B. Desalegn, M. Megharaj, Z. Chen and R. Naidu, Heliyon, 5, e01750 (2019); https://doi.org/10.1016/j.heliyon.2019.e01750
T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A.E. Eroglu, T.B. Scott and K.R. Hallam, Chem. Eng. J., 172, 258 (2011); https://doi.org/10.1016/j.cej.2011.05.103
H.M.P.C. Kumarihami and K.J. Song, J. Korean Tea Soc., 24, 79 (2018); https://doi.org/10.29225/jkts.2018.24.3.79
F. Muhammad, M. Xia, S. Li, X. Yu, Y. Mao, F. Muhammad, X. Huang, B. Jiao, L. Yu and D. Li, J. Clean. Prod., 234, 381 (2019); https://doi.org/10.1016/j.jclepro.2019.06.004
T. Wang, J. Lin, Z. Chen, M. Megharaj and R. Naidu, J. Clean. Prod., 83, 413 (2014); https://doi.org/10.1016/j.jclepro.2014.07.006
K. Mohan Kumar, B.K. Mandal, K. Siva Kumar, P. Sreedhara Reddy and B. Sreedhar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 102, 128 (2013); https://doi.org/10.1016/j.saa.2012.10.015
R.K. Das, B.B. Borthakur and U. Bora, Mater. Lett., 64, 1445 (2010); https://doi.org/10.1016/j.matlet.2010.03.051
R. Yuvakkumar, V. Elango, V. Rajendran and N. Kannan, Digest J. Nanomater. Biostruct., 6, 1771 (2011).
Y. Yi, G. Tu, P.E. Tsang, S. Xiao and Z. Fang, Mater. Lett., 234, 388 (2019); https://doi.org/10.1016/j.matlet.2018.09.137