Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidation Assisted Fabrication of Sterculia Gum/Protein Hybrid Hydrogel Networks through Schiff Base Formation: Characterization and Swelling Kinetic Studies
Corresponding Author(s) : Nisha Sharma
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Polysaccharide/protein hybrid conjugate system becomes an emerging system with integrated characteristics of protein as well as polysaccharide to be exploited for recent advancements in biomedical sectors. Present study is an attempt to fabricate a sterculia gum/gelatin hybrid hydrophilic network system via Schiff base formation using oxidative route at ambient conditions. This route transforms hydrogel synthesis through green mode without employing any crosslinking systems so as to minimize the toxicity issues associated. Fabricated Schiff base based gel systems have been characterized by FT-IR, powdered XRD, FESEM and EDX to confirm the inclusion of new characteristics, morphological changes and functionalization. Oxidation of natural gum drastically alter the physico-chemical behaviour of the gum as confirmed by powdered XRD by incorporating crystalline nature of oxidized sterculia gum as compared to the native sterculia gum and the Schiff base formed. The changes observed are due to the chemical modification of sterculia gum during Schiff base formation. Further the swelling capacity of oxidized sterculia gum and crosslinked network formed is also modulated and was less as compared to native sterculia gum and gelatin. This article also elaborates the mechanistic changes which take place during oxidative route of hydrogel formation in various segments of sterculia gum during oxidation and Schiff base formation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Barak, D. Mudgil and S. Taneja, J. Sci. Food Agric., 100, 2828 (2020); https://doi.org/10.1002/jsfa.10302
- M. Dhiman, A. Singh and M.M. Sharma, Ind. Crops Prod., 130, 341 (2019); https://doi.org/10.1016/j.indcrop.2018.12.065
- G.O. Aspinall, L. Khondo and B.A. Williams, Can. J. Chem., 65, 2069 (1987); https://doi.org/10.1139/v87-343
- A.M. Stephen and S.C. Churms, Food Science Technology, Marcel Dekker: New York, pp. 377-377 (1995).
- E.A. Staba, Contained Compacted Ammunition Primer Composition and Method of Preparation, Google Patents (1969).
- J.M. Mayes, eds.: A. Imeson, Gum Tragacanth and Karaya, In: Food Stabilisers, Thickeners Gelling Agents, Wiley-Blackwell, pp. 167-179 (2009).
- A. Ivy and B.L. Isaacs, Am. J. Dig. Dis., 5, 315 (1938); https://doi.org/10.1007/BF03020553
- A.K. Nayak and D. Pal, Sterculia Gum-Based Hydrogels for Drug Delivery Applications, Polymeric Hydrogels as Smart Biomaterials, Springer, pp. 105-151 (2016).
- E. Tolba, X. Wang, M. Ackermann, M. Neufurth, R. Muñoz-Espí, H.C. Schröder and W.E. Müller, Adv. Sci., 6, 1801452 (2019); https://doi.org/10.1002/advs.201801452
- B. Singh and L. Pal, Int. J. Biol. Macromol., 48, 501 (2011); https://doi.org/10.1016/j.ijbiomac.2011.01.013
- B. Singh and D. Chauhan, Int. J. Polym. Mater., 60, 684 (2011); https://doi.org/10.1080/00914037.2010.551354
- S.S. Bahulkar, N.M. Munot and S.S. Surwase, Carbohydr. Polym., 130, 183 (2015); https://doi.org/10.1016/j.carbpol.2015.04.064
- V.V.V. Padil, C. Senan and M. Sernik, J. Agric. Food. Chem., 14, 63 (2015); https://doi.org/10.1021/jf505783e
- H. Mittal, A. Maity and S.S. Ray, Chem. Eng. J., 279, 166 (2015); https://doi.org/10.1016/j.cej.2015.05.002
- B. Singh and N. Sharma, Carbohydr. Polym., 74, 489 (2008); https://doi.org/10.1016/j.carbpol.2008.04.003
- B. Singh and N. Sharma, Int. J. Biol. Macromol., 43, 142 (2008); https://doi.org/10.1016/j.ijbiomac.2008.04.008
- B. Singh and N. Sharma, Colloids Surf. B, 82, 325 (2011); https://doi.org/10.1016/j.colsurfb.2010.09.004
- B. Singh and N. Sharma, J. Macromol. Sci. Part A, 46, 381 (2009); https://doi.org/10.1080/10601320902720337
- Y. Yu, Y. Wang, W. Ding, J. Zhou and B. Shi, Carbohydr. Polym., 174, 823 (2017); https://doi.org/10.1016/j.carbpol.2017.06.114
- L.H. Garrido, E. Schnitzler, M.E.B. Zortéa, T. de Souza Rocha and I.M. Demiate, J. Food Sci. Technol., 51, 2640 (2014); https://doi.org/10.1007/s13197-012-0794-9
- B. Han, Properties of Oxidized Starch Prepared by Hydrogen Peroxide, Chlorine Dioxide and Sodium Hypochlorite, Proceedings of the 2016 International Conference on Biomedical and Biological Engineering, Atlantis Press (2016).
- N. Kabal’Nova, K.Y. Murinov, I. Mullagaliev, N. Krasnogorskaya, V. Shereshovets, Y.B. Monakov, G. Zaikov, J. Appl. Polym. Sci., 81, 875 (2001); https://doi.org/10.1002/app.1506
- I. Pereira, J. Simões, D.V. Evtyugin, S. Rouif, M.A. Coimbra, M.R.M. Domingues and M. Gama, Eur. Polym. J., 103, 158 (2018); https://doi.org/10.1016/j.eurpolymj.2018.04.011
- M. Muhammad, C. Willems, J. Rodríguez-Fernández, G. Gallego-Ferrer and T. Groth, Biomolecules, 10, 1185 (2020); https://doi.org/10.3390/biom10081185
- X. Wu, Y. Ye, Y. Chen, B. Ding, J. Cui and B. Jiang, Carbohydr. Polym., 80, 1178 (2010); https://doi.org/10.1016/j.carbpol.2010.01.044
- J. Yu, P.R. Chang and X. Ma, Carbohydr. Polym., 79, 296 (2010); https://doi.org/10.1016/j.carbpol.2009.08.005
- J. Rankin and C. Mehltretter, Anal. Chem., 28, 1012 (1956); https://doi.org/10.1021/ac60114a025
- S. Veelaert, D. De Wit, K. Gotlieb and R. Verhé, Carbohydr. Polym., 33, 153 (1997); https://doi.org/10.1016/S0144-8617(97)00046-5
- J. Maia, R.A. Carvalho, J.F. Coelho, P.N. Simões and M.H. Gil, Polymer, 52, 258 (2011); https://doi.org/10.1016/j.polymer.2010.11.058
- S. Chen, S. Cui, H. Zhang, X. Pei, J. Hu, Y. Zhou and Y. Liu, Biomacromolecules, 19, 490 (2018); https://doi.org/10.1021/acs.biomac.7b01605
- D. Berillo, L. Elowsson and H. Kirsebom, Macromol. Biosci., 12, 1090 (2012); https://doi.org/10.1002/mabi.201200023
- D. Kedaria and R. Vasita, J. Tissue Eng., 8, (2017); https://doi.org/10.1177/2041731417718391
- L. Fan, Y. Sun, W. Xie, H. Zheng and S. Liu, J. Biomater. Sci. Polym. Ed., 23, 2119 (2012); https://doi.org/10.1163/092050611X611675
- A. Usman, A. Salisu and A. Danjani, Bayero J. Pure Appl. Sci., 9, 213 (2016); https://doi.org/10.4314/bajopas.v9i2.37
- S.M. Keshk, A.M. Ramadan and S. Bondock, Carbohydr. Polym., 127, 246 (2015); https://doi.org/10.1016/j.carbpol.2015.03.038
- L. Wang, W. Zhou, Q. Wang, C. Xu, Q. Tang and H. Yang, Molecules, 23, 546 (2018); https://doi.org/10.3390/molecules23030546
- M. Ragothaman, T. Palanisamy and C. Kalirajan, Carbohydr. Polym., 114, 399 (2014); https://doi.org/10.1016/j.carbpol.2014.08.045
- R.S. Singh, N. Kaur, V. Rana, R.K. Singla, N. Kang, G. Kaur, H. Kaur and J.F. Kennedy, Int. J. Biol. Macromol., 149, 348 (2020); https://doi.org/10.1016/j.ijbiomac.2020.01.261
- J. Poppe, Gelatin, Thickening and Gelling Agents for Food, Springer, pp. 98-123 (1992).
- B. Balakrishnan, N. Joshi, A. Jayakrishnan and R. Banerjee, Acta Biomater., 10, 3650 (2014); https://doi.org/10.1016/j.actbio.2014.04.031
- B. Balakrishnan, N. Joshi and R. Banerjee, J. Mater. Chem. B Mater. Biol. Med., 1, 5564 (2013); https://doi.org/10.1039/c3tb21056a
- P. Sarika and N.R. James, Int. J. Biol. Macromol., 76, 181 (2015); https://doi.org/10.1016/j.ijbiomac.2015.02.038
- O. Moreno, J. Cárdenas, L. Atarés and A. Chiralt, Carbohydr. Polym., 178, 147 (2017); https://doi.org/10.1016/j.carbpol.2017.08.128
- B. Gupta, M. Tummalapalli, B. Deopura and M. Alam, Carbohydr. Polym., 106, 312 (2014); https://doi.org/10.1016/j.carbpol.2014.02.019
- A. Chetouani, M. Elkolli, M. Bounekhel and D. Benachour, Polym. Bull., 71, 2303 (2014); https://doi.org/10.1007/s00289-014-1189-z
- Ministry of Health and Family Welfare, Pharmacopoeia of India: The Indian Pharmacopoeia, Controller of Publications: Delhi (1985).
- J. Bobbitt, Adv. Carbohydr. Chem.,48, 1 (1956); https://doi.org/10.1016/s0096-5332(08)60115-0
- B. Balakrishnan, M. Mohanty, P. Umashankar and A. Jayakrishnan, Biomaterials, 26, 6335 (2005); https://doi.org/10.1016/j.biomaterials.2005.04.012
- B. Singh, Int. J. Pharm., 334, 1 (2007); https://doi.org/10.1016/j.ijpharm.2007.01.028
- P.L. Ritger and N.A. Peppas, J. Control. Rel., 5, 23 (1987); https://doi.org/10.1016/0168-3659(87)90034-4
- B. Singh and N. Sharma, Biomacromolecules, 10, 2515 (2009); https://doi.org/10.1021/bm9004645
- U.-J. Kim, S. Kuga, M. Wada, T. Okano and T. Kondo, Biomacromolecules, 1, 488 (2000); https://doi.org/10.1021/bm0000337
- S.D. Zhang, Y.R. Zhang, J. Zhu, X.L. Wang, K.K. Yang and Y.Z. Wang, Starke, 59, 258 (2007); https://doi.org/10.1002/star.200600598
- C. Peña, K. De La Caba, A. Eceiza, R. Ruseckaite and I. Mondragon, Bioresour. Technol., 101, 6836 (2010); https://doi.org/10.1016/j.biortech.2010.03.112
- D. Suhag, R. Bhatia, S. Das, A. Shakeel, A. Ghosh, A. Singh, O. Sinha, S. Chakrabarti and M. Mukherjee, RSC Adv., 5, 53963 (2015); https://doi.org/10.1039/C5RA07424J
References
S. Barak, D. Mudgil and S. Taneja, J. Sci. Food Agric., 100, 2828 (2020); https://doi.org/10.1002/jsfa.10302
M. Dhiman, A. Singh and M.M. Sharma, Ind. Crops Prod., 130, 341 (2019); https://doi.org/10.1016/j.indcrop.2018.12.065
G.O. Aspinall, L. Khondo and B.A. Williams, Can. J. Chem., 65, 2069 (1987); https://doi.org/10.1139/v87-343
A.M. Stephen and S.C. Churms, Food Science Technology, Marcel Dekker: New York, pp. 377-377 (1995).
E.A. Staba, Contained Compacted Ammunition Primer Composition and Method of Preparation, Google Patents (1969).
J.M. Mayes, eds.: A. Imeson, Gum Tragacanth and Karaya, In: Food Stabilisers, Thickeners Gelling Agents, Wiley-Blackwell, pp. 167-179 (2009).
A. Ivy and B.L. Isaacs, Am. J. Dig. Dis., 5, 315 (1938); https://doi.org/10.1007/BF03020553
A.K. Nayak and D. Pal, Sterculia Gum-Based Hydrogels for Drug Delivery Applications, Polymeric Hydrogels as Smart Biomaterials, Springer, pp. 105-151 (2016).
E. Tolba, X. Wang, M. Ackermann, M. Neufurth, R. Muñoz-Espí, H.C. Schröder and W.E. Müller, Adv. Sci., 6, 1801452 (2019); https://doi.org/10.1002/advs.201801452
B. Singh and L. Pal, Int. J. Biol. Macromol., 48, 501 (2011); https://doi.org/10.1016/j.ijbiomac.2011.01.013
B. Singh and D. Chauhan, Int. J. Polym. Mater., 60, 684 (2011); https://doi.org/10.1080/00914037.2010.551354
S.S. Bahulkar, N.M. Munot and S.S. Surwase, Carbohydr. Polym., 130, 183 (2015); https://doi.org/10.1016/j.carbpol.2015.04.064
V.V.V. Padil, C. Senan and M. Sernik, J. Agric. Food. Chem., 14, 63 (2015); https://doi.org/10.1021/jf505783e
H. Mittal, A. Maity and S.S. Ray, Chem. Eng. J., 279, 166 (2015); https://doi.org/10.1016/j.cej.2015.05.002
B. Singh and N. Sharma, Carbohydr. Polym., 74, 489 (2008); https://doi.org/10.1016/j.carbpol.2008.04.003
B. Singh and N. Sharma, Int. J. Biol. Macromol., 43, 142 (2008); https://doi.org/10.1016/j.ijbiomac.2008.04.008
B. Singh and N. Sharma, Colloids Surf. B, 82, 325 (2011); https://doi.org/10.1016/j.colsurfb.2010.09.004
B. Singh and N. Sharma, J. Macromol. Sci. Part A, 46, 381 (2009); https://doi.org/10.1080/10601320902720337
Y. Yu, Y. Wang, W. Ding, J. Zhou and B. Shi, Carbohydr. Polym., 174, 823 (2017); https://doi.org/10.1016/j.carbpol.2017.06.114
L.H. Garrido, E. Schnitzler, M.E.B. Zortéa, T. de Souza Rocha and I.M. Demiate, J. Food Sci. Technol., 51, 2640 (2014); https://doi.org/10.1007/s13197-012-0794-9
B. Han, Properties of Oxidized Starch Prepared by Hydrogen Peroxide, Chlorine Dioxide and Sodium Hypochlorite, Proceedings of the 2016 International Conference on Biomedical and Biological Engineering, Atlantis Press (2016).
N. Kabal’Nova, K.Y. Murinov, I. Mullagaliev, N. Krasnogorskaya, V. Shereshovets, Y.B. Monakov, G. Zaikov, J. Appl. Polym. Sci., 81, 875 (2001); https://doi.org/10.1002/app.1506
I. Pereira, J. Simões, D.V. Evtyugin, S. Rouif, M.A. Coimbra, M.R.M. Domingues and M. Gama, Eur. Polym. J., 103, 158 (2018); https://doi.org/10.1016/j.eurpolymj.2018.04.011
M. Muhammad, C. Willems, J. Rodríguez-Fernández, G. Gallego-Ferrer and T. Groth, Biomolecules, 10, 1185 (2020); https://doi.org/10.3390/biom10081185
X. Wu, Y. Ye, Y. Chen, B. Ding, J. Cui and B. Jiang, Carbohydr. Polym., 80, 1178 (2010); https://doi.org/10.1016/j.carbpol.2010.01.044
J. Yu, P.R. Chang and X. Ma, Carbohydr. Polym., 79, 296 (2010); https://doi.org/10.1016/j.carbpol.2009.08.005
J. Rankin and C. Mehltretter, Anal. Chem., 28, 1012 (1956); https://doi.org/10.1021/ac60114a025
S. Veelaert, D. De Wit, K. Gotlieb and R. Verhé, Carbohydr. Polym., 33, 153 (1997); https://doi.org/10.1016/S0144-8617(97)00046-5
J. Maia, R.A. Carvalho, J.F. Coelho, P.N. Simões and M.H. Gil, Polymer, 52, 258 (2011); https://doi.org/10.1016/j.polymer.2010.11.058
S. Chen, S. Cui, H. Zhang, X. Pei, J. Hu, Y. Zhou and Y. Liu, Biomacromolecules, 19, 490 (2018); https://doi.org/10.1021/acs.biomac.7b01605
D. Berillo, L. Elowsson and H. Kirsebom, Macromol. Biosci., 12, 1090 (2012); https://doi.org/10.1002/mabi.201200023
D. Kedaria and R. Vasita, J. Tissue Eng., 8, (2017); https://doi.org/10.1177/2041731417718391
L. Fan, Y. Sun, W. Xie, H. Zheng and S. Liu, J. Biomater. Sci. Polym. Ed., 23, 2119 (2012); https://doi.org/10.1163/092050611X611675
A. Usman, A. Salisu and A. Danjani, Bayero J. Pure Appl. Sci., 9, 213 (2016); https://doi.org/10.4314/bajopas.v9i2.37
S.M. Keshk, A.M. Ramadan and S. Bondock, Carbohydr. Polym., 127, 246 (2015); https://doi.org/10.1016/j.carbpol.2015.03.038
L. Wang, W. Zhou, Q. Wang, C. Xu, Q. Tang and H. Yang, Molecules, 23, 546 (2018); https://doi.org/10.3390/molecules23030546
M. Ragothaman, T. Palanisamy and C. Kalirajan, Carbohydr. Polym., 114, 399 (2014); https://doi.org/10.1016/j.carbpol.2014.08.045
R.S. Singh, N. Kaur, V. Rana, R.K. Singla, N. Kang, G. Kaur, H. Kaur and J.F. Kennedy, Int. J. Biol. Macromol., 149, 348 (2020); https://doi.org/10.1016/j.ijbiomac.2020.01.261
J. Poppe, Gelatin, Thickening and Gelling Agents for Food, Springer, pp. 98-123 (1992).
B. Balakrishnan, N. Joshi, A. Jayakrishnan and R. Banerjee, Acta Biomater., 10, 3650 (2014); https://doi.org/10.1016/j.actbio.2014.04.031
B. Balakrishnan, N. Joshi and R. Banerjee, J. Mater. Chem. B Mater. Biol. Med., 1, 5564 (2013); https://doi.org/10.1039/c3tb21056a
P. Sarika and N.R. James, Int. J. Biol. Macromol., 76, 181 (2015); https://doi.org/10.1016/j.ijbiomac.2015.02.038
O. Moreno, J. Cárdenas, L. Atarés and A. Chiralt, Carbohydr. Polym., 178, 147 (2017); https://doi.org/10.1016/j.carbpol.2017.08.128
B. Gupta, M. Tummalapalli, B. Deopura and M. Alam, Carbohydr. Polym., 106, 312 (2014); https://doi.org/10.1016/j.carbpol.2014.02.019
A. Chetouani, M. Elkolli, M. Bounekhel and D. Benachour, Polym. Bull., 71, 2303 (2014); https://doi.org/10.1007/s00289-014-1189-z
Ministry of Health and Family Welfare, Pharmacopoeia of India: The Indian Pharmacopoeia, Controller of Publications: Delhi (1985).
J. Bobbitt, Adv. Carbohydr. Chem.,48, 1 (1956); https://doi.org/10.1016/s0096-5332(08)60115-0
B. Balakrishnan, M. Mohanty, P. Umashankar and A. Jayakrishnan, Biomaterials, 26, 6335 (2005); https://doi.org/10.1016/j.biomaterials.2005.04.012
B. Singh, Int. J. Pharm., 334, 1 (2007); https://doi.org/10.1016/j.ijpharm.2007.01.028
P.L. Ritger and N.A. Peppas, J. Control. Rel., 5, 23 (1987); https://doi.org/10.1016/0168-3659(87)90034-4
B. Singh and N. Sharma, Biomacromolecules, 10, 2515 (2009); https://doi.org/10.1021/bm9004645
U.-J. Kim, S. Kuga, M. Wada, T. Okano and T. Kondo, Biomacromolecules, 1, 488 (2000); https://doi.org/10.1021/bm0000337
S.D. Zhang, Y.R. Zhang, J. Zhu, X.L. Wang, K.K. Yang and Y.Z. Wang, Starke, 59, 258 (2007); https://doi.org/10.1002/star.200600598
C. Peña, K. De La Caba, A. Eceiza, R. Ruseckaite and I. Mondragon, Bioresour. Technol., 101, 6836 (2010); https://doi.org/10.1016/j.biortech.2010.03.112
D. Suhag, R. Bhatia, S. Das, A. Shakeel, A. Ghosh, A. Singh, O. Sinha, S. Chakrabarti and M. Mukherjee, RSC Adv., 5, 53963 (2015); https://doi.org/10.1039/C5RA07424J