Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Brønsted Acid Catalysis in the Oxidation of Purine Based Alkaloids by Mn(VII) in Aqueous Acetonitrile and Sodium Fluoride Medium: A Kinetic Approach
Corresponding Author(s) : K.C. Rajanna
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Brønsted acid (HClO4, H2SO4) catalyzed Mn(VII) oxidation of purine alkaloids such as caffeine, theophylline and theobromine in aqueous acetonitrile and sodium fluoride medium revealed first order kinetics in both [(Mn(VII)] and [Alkaloid] at constant acidity and temperature. Sodium fluoride was added to the reaction mixture in order to avoid/suppress auto catalytic reaction due to the generation of Mn(III) and Mn(IV) species during the course of Mn(VII) oxidations in acidic solutions. An increase in the Brønsted acids (HClO4, H2SO4) concentration accelerated the rate of oxidation. Rate enhancements observed here in are analyzed by Zucker-Hammett, Bunnett and Bunnett-Olsen criteria of acidity functions. On the basis of observed Bunnett-Olsen criteria of acidity functions, the most plausible mechanism has been proposed with the involvement of water molecule in the slow step (as proton transferring agent).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M. Graham, Nutr. Rev., 36, 97 (1978); https://doi.org/10.1111/j.1753-4887.1978.tb03717.x
- A. Turnbull, Nutr. Bull., 6, 153 (1981); https://doi.org/10.1111/j.1467-3010.1981.tb00494.x
- H. Ashihara and T. Suzuki, Front. Biosci., 9, 1864 (2004): https://doi.org/10.2741/1367
- H. Ashihara, K. Mizuno, T. Yokota and A. Crozier, Prog. Chem. Org. Nat. Prod., 105, 1 (2017); https://doi.org/10.1007/978-3-319-49712-9_1
- F.J. Luna-Vázquez, C. Ibarra-Alvarado, A. Rojas-Molina, I. RojasMolina and M.Á. Zavala-Sánchez, Molecules, 18, 5814 (2013); https://doi.org/10.3390/molecules18055814
- G. Hussain, A. Rasul, H. Anwar, N. Aziz, A. Razzaq, W. Wei, M. Ali, J. Li and X. Li, Int. J. Biol. Sci., 14, 341 (2018); https://doi.org/10.7150/ijbs.23247
- A.M. Ehrenworth and P. Peralta-Yahya, Nat. Chem. Biol., 13, 249 (2017); https://doi.org/10.1038/nchembio.2308
- G. Mahemuti, H. Zhang, J. Li, N. Tieliwaerdi and L. Ren, Drug Des. Devel. Ther., 12, 99 (2018); https://doi.org/10.2147/DDDT.S156509
- P.J. Barnes, Am. J. Respir. Crit. Care Med., 188, 901 (2013); https://doi.org/10.1164/rccm.201302-0388PP
- A. Aralihond, Z. Shanta, A. Pullattayil and C.V.E. Powell, Breathe, 16, 200081 (2020); https://doi.org/10.1183/20734735.0081-2020
- S. Dash, S. Patel and B.K. Mishra, Tetrahedron, 65, 707 (2009); https://doi.org/10.1016/j.tet.2008.10.038
- I. Bhatia and K.K. Banerji, J. Chem. Soc. Perkin Trans. II, 1577 (1983); https://doi.org/10.1039/P29830001577
- K.K. Sen Gupta, M. Adhikari and S.S. Gupta, React. Kinet. Catal. Lett., 38, 313 (1989); https://doi.org/10.1007/BF02062124
- D.G. Lee and T. Chen, J. Org. Chem., 56, 5341 (1991); https://doi.org/10.1021/jo00018a025
- R.M. Hassan, M.A. Mousa and M.H. Wahdan, J. Chem. Soc. Dalton Trans., 605 (1988); https://doi.org/10.1039/DT9880000605
- V.S. Rao, B. Sethuram and T.N. Rao, Int. J. Chem. Kinet., 11, 165 (1979); https://doi.org/10.1002/kin.550110208
- H. Iloukhani and H. Bahrami, Int. J. Chem. Kinet., 31, 95 (1999); https://doi.org/10.1002/(SICI)1097-4601(1999)31:2<95::AIDKIN3>3.0.CO;2-U
- D. Song, W.A. Jefferson, H. Cheng, X. Jiang, Z. Qiang, H. He, H. Liu and J. Qu, Chemosphere, 222, 71 (2019); https://doi.org/10.1016/j.chemosphere.2019.01.113
- A. Carrington and M.C.R. Symons, Chem. Rev., 63, 443 (1963); https://doi.org/10.1021/cr60225a001
- D.G. Lee, E.G. Lee and K.C. Brown, Phase Transfer Catalysis, New Chemistry, Catalysts and Applications, ACS Symposium Series No. 326, American Chemical Society, Washington, DC (1987).
- S. Shylaja, K.C. Rajanna, K. Ramesh, K.R. Reddy and P.G. Reddy, Adv. Phys. Chem., 2013, 835610 (2013); https://doi.org/10.1155/2013/835610
- S. Shylaja, K. Ramesh, P.G. Reddy, K.C. Rajanna and P.K. Saiprakash, Int. J. Org. Chem., 1, 148 (2011); https://doi.org/10.4236/ijoc.2011.14022
- R.V. Hosahalli, A.P. Savanur, S.T. Nandibewoor and S.A. Chimatadar, J. Solution Chem., 41, 567 (2012); https://doi.org/10.1007/s10953-012-9819-2
- A. Fawzy, I.A. Zaafarany, K.S. Khairou, L.S. Almazroai and T.M. Bawazeer, Science J. Chem., 4, 19 (2016); https://doi.org/10.11648/j.sjc.20160402.12
- R.M. Hassan, Can. J. Chem., 69, 2018 (1991);https://doi.org/10.1139/v91-292
- P. Kumar and Z. Khan, Transition Met. Chem., 32, 193 (2007); https://doi.org/10.1007/s11243-006-0147-5
- P.S. Radhakrishnamurti and M.D. Rao, Indian J. Chem., 15A, 524 (1977).
- V. Surender Rao, B. Sethuram and T. Navaneeth Rao, Indian J. Chem., 18A, 37 (1979).
- R.M. Hassan, M.A. Mousa and S.A. El-Shatovry, J. Chem. Soc., Dalton Trans., 601 (1988); https://doi.org/10.1039/dt9880000601
- H. Diebler and N. Sutin, J. Phys. Chem., 68, 174 (1964); https://doi.org/10.1021/j100783a029
- K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, VCH: New York (1990).
- K.J. Laidler, Chemical Kinetics, Harper and Row: New York, ed.:3 (1987).
- H.S. Rochester, Acidity Functions, Academic Press: New York (1970).
- L. Zucker and L.P. Hammett, J. Am. Chem. Soc., 61, 2785 (1939); https://doi.org/10.1021/ja01265a066
- J.P. Bunnett, J. Am. Chem. Soc., 83, 4968 (1961); https://doi.org/10.1021/ja01485a020
- J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1899 (1966); https://doi.org/10.1139/v66-286
- J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1917 (1966); https://doi.org/10.1139/v66-287
- R.A. Cox and K. Yates, Can. J. Chem., 61, 2225 (1983); https://doi.org/10.1139/v83-388
- M.A. Paul and F.A. Long, Chem. Rev., 57, 1 (1957); https://doi.org/10.1021/cr50013a001
- L.P. Hammett, Physical Organic Chemistry, McGraw Hill: Tokyo (1970).
References
D.M. Graham, Nutr. Rev., 36, 97 (1978); https://doi.org/10.1111/j.1753-4887.1978.tb03717.x
A. Turnbull, Nutr. Bull., 6, 153 (1981); https://doi.org/10.1111/j.1467-3010.1981.tb00494.x
H. Ashihara and T. Suzuki, Front. Biosci., 9, 1864 (2004): https://doi.org/10.2741/1367
H. Ashihara, K. Mizuno, T. Yokota and A. Crozier, Prog. Chem. Org. Nat. Prod., 105, 1 (2017); https://doi.org/10.1007/978-3-319-49712-9_1
F.J. Luna-Vázquez, C. Ibarra-Alvarado, A. Rojas-Molina, I. RojasMolina and M.Á. Zavala-Sánchez, Molecules, 18, 5814 (2013); https://doi.org/10.3390/molecules18055814
G. Hussain, A. Rasul, H. Anwar, N. Aziz, A. Razzaq, W. Wei, M. Ali, J. Li and X. Li, Int. J. Biol. Sci., 14, 341 (2018); https://doi.org/10.7150/ijbs.23247
A.M. Ehrenworth and P. Peralta-Yahya, Nat. Chem. Biol., 13, 249 (2017); https://doi.org/10.1038/nchembio.2308
G. Mahemuti, H. Zhang, J. Li, N. Tieliwaerdi and L. Ren, Drug Des. Devel. Ther., 12, 99 (2018); https://doi.org/10.2147/DDDT.S156509
P.J. Barnes, Am. J. Respir. Crit. Care Med., 188, 901 (2013); https://doi.org/10.1164/rccm.201302-0388PP
A. Aralihond, Z. Shanta, A. Pullattayil and C.V.E. Powell, Breathe, 16, 200081 (2020); https://doi.org/10.1183/20734735.0081-2020
S. Dash, S. Patel and B.K. Mishra, Tetrahedron, 65, 707 (2009); https://doi.org/10.1016/j.tet.2008.10.038
I. Bhatia and K.K. Banerji, J. Chem. Soc. Perkin Trans. II, 1577 (1983); https://doi.org/10.1039/P29830001577
K.K. Sen Gupta, M. Adhikari and S.S. Gupta, React. Kinet. Catal. Lett., 38, 313 (1989); https://doi.org/10.1007/BF02062124
D.G. Lee and T. Chen, J. Org. Chem., 56, 5341 (1991); https://doi.org/10.1021/jo00018a025
R.M. Hassan, M.A. Mousa and M.H. Wahdan, J. Chem. Soc. Dalton Trans., 605 (1988); https://doi.org/10.1039/DT9880000605
V.S. Rao, B. Sethuram and T.N. Rao, Int. J. Chem. Kinet., 11, 165 (1979); https://doi.org/10.1002/kin.550110208
H. Iloukhani and H. Bahrami, Int. J. Chem. Kinet., 31, 95 (1999); https://doi.org/10.1002/(SICI)1097-4601(1999)31:2<95::AIDKIN3>3.0.CO;2-U
D. Song, W.A. Jefferson, H. Cheng, X. Jiang, Z. Qiang, H. He, H. Liu and J. Qu, Chemosphere, 222, 71 (2019); https://doi.org/10.1016/j.chemosphere.2019.01.113
A. Carrington and M.C.R. Symons, Chem. Rev., 63, 443 (1963); https://doi.org/10.1021/cr60225a001
D.G. Lee, E.G. Lee and K.C. Brown, Phase Transfer Catalysis, New Chemistry, Catalysts and Applications, ACS Symposium Series No. 326, American Chemical Society, Washington, DC (1987).
S. Shylaja, K.C. Rajanna, K. Ramesh, K.R. Reddy and P.G. Reddy, Adv. Phys. Chem., 2013, 835610 (2013); https://doi.org/10.1155/2013/835610
S. Shylaja, K. Ramesh, P.G. Reddy, K.C. Rajanna and P.K. Saiprakash, Int. J. Org. Chem., 1, 148 (2011); https://doi.org/10.4236/ijoc.2011.14022
R.V. Hosahalli, A.P. Savanur, S.T. Nandibewoor and S.A. Chimatadar, J. Solution Chem., 41, 567 (2012); https://doi.org/10.1007/s10953-012-9819-2
A. Fawzy, I.A. Zaafarany, K.S. Khairou, L.S. Almazroai and T.M. Bawazeer, Science J. Chem., 4, 19 (2016); https://doi.org/10.11648/j.sjc.20160402.12
R.M. Hassan, Can. J. Chem., 69, 2018 (1991);https://doi.org/10.1139/v91-292
P. Kumar and Z. Khan, Transition Met. Chem., 32, 193 (2007); https://doi.org/10.1007/s11243-006-0147-5
P.S. Radhakrishnamurti and M.D. Rao, Indian J. Chem., 15A, 524 (1977).
V. Surender Rao, B. Sethuram and T. Navaneeth Rao, Indian J. Chem., 18A, 37 (1979).
R.M. Hassan, M.A. Mousa and S.A. El-Shatovry, J. Chem. Soc., Dalton Trans., 601 (1988); https://doi.org/10.1039/dt9880000601
H. Diebler and N. Sutin, J. Phys. Chem., 68, 174 (1964); https://doi.org/10.1021/j100783a029
K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, VCH: New York (1990).
K.J. Laidler, Chemical Kinetics, Harper and Row: New York, ed.:3 (1987).
H.S. Rochester, Acidity Functions, Academic Press: New York (1970).
L. Zucker and L.P. Hammett, J. Am. Chem. Soc., 61, 2785 (1939); https://doi.org/10.1021/ja01265a066
J.P. Bunnett, J. Am. Chem. Soc., 83, 4968 (1961); https://doi.org/10.1021/ja01485a020
J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1899 (1966); https://doi.org/10.1139/v66-286
J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1917 (1966); https://doi.org/10.1139/v66-287
R.A. Cox and K. Yates, Can. J. Chem., 61, 2225 (1983); https://doi.org/10.1139/v83-388
M.A. Paul and F.A. Long, Chem. Rev., 57, 1 (1957); https://doi.org/10.1021/cr50013a001
L.P. Hammett, Physical Organic Chemistry, McGraw Hill: Tokyo (1970).