Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of Non-precious Vanadium Tungsten Nanocomposite for Enhanced Electrocatalytic Oxygen Reduction Reaction
Corresponding Author(s) : P. Elangovan
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
For the commercialization of alkaline fuel cells and metal air batteries, the advances in non-precious, cheap, stable electrocatalysts for the oxygen reduction reaction (ORR) and highly active remain a major problem. To overcome this problem, a facile approach was established to fabricate non-precious metal electrocatalysts, such as nanoparticles, pristine V2O5 and their WO3 hybrids. This is the first study reporting the utilization of monoclinic-WO3-nanocrystal-coupled V2O5 that serves as ORR catalysts. Compared with 50 wt.% WO3 with 50 wt.% V2O5 (VW-2) spheres and pristine V2O5, the hybrid catalyst of 25 wt.% WO3 and 75 wt.% V2O5 (VW-1) spheres exhibits outstanding catalytic activity towards ORR. In addition, the hybrid of 25 wt.% WO3 and 75 wt.% V2O5 (VW-1) exhibits a higher long-term durability and catalytic activity than high-quality commercial Pt/C catalysts, which renders the composites of WO3/V2O5 composites hybrid a high-capacity candidate for non-precious, high-performance, metal-based electrocatalysts having high efficiency and low cost for electrochemical energy conversion. The enhanced activity of WO3/V2O5 composites is mainly obtained from the improved structural openness in the V2O5 tunnel structure when coupled with WO3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Chen, D. Higgins, A. Yu, L. Zhang and J. Zhang, Energy Environ. Sci., 4, 3167 (2011); https://doi.org/10.1039/c0ee00558d
- S. Chandrasekaran and S.H. Hur, Mater. Res. Bull., 112, 95 (2019); https://doi.org/10.1016/j.materresbull.2018.12.010
- S. Chandrasekaran, E.J. Kim, J.S. Chung, C.R. Bowen, B. Rajagopalan, V. Adamaki, R. Misra and S.H. Hur, J. Mater. Chem. A Mater. Energy Sustain., 4, 13271 (2016); https://doi.org/10.1039/C6TA05043C
- M. Khandelwal, S. Chandrasekaran, S.H. Hur and J.S. Chung, J. Power Sources, 407, 70 (2018); https://doi.org/10.1016/j.jpowsour.2018.10.055
- M. Liu, Z. Zhao, X. Duan and Y. Huang, Adv. Mater., 31, 1802234 (2019); https://doi.org/10.1002/adma.201802234
- S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen, J. Roscow, Y. Zhang, Z. Lin, R.D.K. Misra, J. Li, P. Zhang and H. Zhang, Nano Energy, 77, 105080 (2020); https://doi.org/10.1016/j.nanoen.2020.105080
- S. Chandrasekaran, C. Bowen, J. Roscow, Y. Zhang, D.K. Dang, E.J. Kim, R.D.K. Misra, L. Deng, J.S. Chung and S.H. Hur, Phys. Rep., 792, 1 (2019); https://doi.org/10.1016/j.physrep.2018.11.001
- W. Liu, P. Geng, S. Li, R. Zhu, W. Liu, H. Lu, S. Chandrasekaran, Y. Pang, D. Fan and Y. Liu, Int. J. Hydrogen Energy, 45, 28576 (2020); https://doi.org/10.1016/j.ijhydene.2020.07.144
- H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More and P. Zelenay, Science, 357, 479 (2017); https://doi.org/10.1126/science.aan2255
- A. Elmouwahidi, E. Bailón-García, A.F. Pérez-Cadenas, J. CasteloQuibén and F. Carrasco-Marín, Carbon, 144,289 (2019); https://doi.org/10.1016/j.carbon.2018.12.038
- S. Chen, S. Chandrasekaran, S. Cui and X. Zhang, Inorg. Chem. Commun., 120, 108159 (2020); https://doi.org/10.1016/j.inoche.2020.108159
- J. Zhu, J. Roscow, S. Chandrasekaran, L. Deng, P. Zhang, T. He, K. Wang and L. Huang, ChemSusChem, 13, 1275 (2020); https://doi.org/10.1002/cssc.201902685
- J. Kim, H.E. Kim and H. Lee, ChemSusChem, 11, 104 (2018); https://doi.org/10.1002/cssc.201701306
- V. Kashyap, S.K. Singh and S. Kurungot, ACS Appl. Mater. Interfaces, 8, 20730 (2016); https://doi.org/10.1021/acsami.6b05416
- A. Kumar, Y. Zhang, W. Liu and X. Sun, Coord. Chem. Rev., 402, 213047 (2020); https://doi.org/10.1016/j.ccr.2019.213047
- Q. Lv, N. Wang, W. Si, Z. Hou, X. Li, X. Wang, F. Zhao, Z. Yang, Y. Zhang and C. Huang, Appl. Catal. B, 261, 118234 (2020); https://doi.org/10.1016/j.apcatb.2019.118234
- J. Liang, Y. Jiao, M. Jaroniec and S.Z. Qiao, Angew. Chem. Int. Ed., 51, 11496 (2012); https://doi.org/10.1002/anie.201206720
- M. Song, Y. Song, W. Sha, B. Xu, J. Guo and Y. Wu, Catalysts, 10, 141 (2020); https://doi.org/10.3390/catal10010141
- J. Li, S. Huang, G. Zhang, Z. Li, S. Tong, J. Wang and M. Wu, Chem. Commun., 56, 1823 (2020); https://doi.org/10.1039/C9CC08980B
- S. Chandrasekaran, P. Zhang, F. Peng, C. Bowen, J. Huo and L. Deng, J. Mater. Chem. A Mater. Energy Sustain., 7, 6161 (2019); https://doi.org/10.1039/C8TA12238E
- K. Maiti, J. Balamurugan, J. Gautam, N.H. Kim and J.H. Lee, ACS Appl. Mater. Interfaces, 10, 32220 (2018); https://doi.org/10.1021/acsami.8b11406
- I.A. Rutkowska, A. Wadas, S. Zoladek, M. Skunik-Nuckowska, K. Miecznikowski, E. Negro, V.D. Noto, A. Zlotorowicz, P. Zelenay and P.J. Kulesza, J. Electrochem. Soc., 165, J3384 (2018); https://doi.org/10.1149/2.0491815jes
- J.-K. Lai and I.E. Wachs, ACS Catal., 8, 6537 (2018); https://doi.org/10.1021/acscatal.8b01357
- E. Skliri, I.N. Lykakis and G.S. Armatas, RSC Adv., 4, 46170 (2014); https://doi.org/10.1039/C4RA07850K
- S. Chandrasekaran, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 290, 465 (2016); https://doi.org/10.1016/j.cej.2016.01.029
- S. Chandrasekaran, E.J. Kim, J.S. Chung, I.-K. Yoo, V. Senthilkumar, Y.S. Kim, C.R. Bowen, V. Adamaki and S. Hyun Hur, Chem. Eng. J., 309, 682 (2017); https://doi.org/10.1016/j.cej.2016.10.087
- S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng and P. Zhang, Chem. Soc. Rev., 48, 4178 (2019); https://doi.org/10.1039/C8CS00664D
- H.-Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo and J. Rossmeisl, Phys. Chem. Chem. Phys., 14, 14010 (2012); https://doi.org/10.1039/c2cp40841d
- C. Goswami, K.K. Hazarika and P. Bharali, Mater. Sci. Energy Technol., 1, 117 (2018); https://doi.org/10.1016/j.mset.2018.06.005
- H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho and G. Wu, Nano Today, 11, 601 (2016); https://doi.org/10.1016/j.nantod.2016.09.001
References
Z. Chen, D. Higgins, A. Yu, L. Zhang and J. Zhang, Energy Environ. Sci., 4, 3167 (2011); https://doi.org/10.1039/c0ee00558d
S. Chandrasekaran and S.H. Hur, Mater. Res. Bull., 112, 95 (2019); https://doi.org/10.1016/j.materresbull.2018.12.010
S. Chandrasekaran, E.J. Kim, J.S. Chung, C.R. Bowen, B. Rajagopalan, V. Adamaki, R. Misra and S.H. Hur, J. Mater. Chem. A Mater. Energy Sustain., 4, 13271 (2016); https://doi.org/10.1039/C6TA05043C
M. Khandelwal, S. Chandrasekaran, S.H. Hur and J.S. Chung, J. Power Sources, 407, 70 (2018); https://doi.org/10.1016/j.jpowsour.2018.10.055
M. Liu, Z. Zhao, X. Duan and Y. Huang, Adv. Mater., 31, 1802234 (2019); https://doi.org/10.1002/adma.201802234
S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen, J. Roscow, Y. Zhang, Z. Lin, R.D.K. Misra, J. Li, P. Zhang and H. Zhang, Nano Energy, 77, 105080 (2020); https://doi.org/10.1016/j.nanoen.2020.105080
S. Chandrasekaran, C. Bowen, J. Roscow, Y. Zhang, D.K. Dang, E.J. Kim, R.D.K. Misra, L. Deng, J.S. Chung and S.H. Hur, Phys. Rep., 792, 1 (2019); https://doi.org/10.1016/j.physrep.2018.11.001
W. Liu, P. Geng, S. Li, R. Zhu, W. Liu, H. Lu, S. Chandrasekaran, Y. Pang, D. Fan and Y. Liu, Int. J. Hydrogen Energy, 45, 28576 (2020); https://doi.org/10.1016/j.ijhydene.2020.07.144
H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More and P. Zelenay, Science, 357, 479 (2017); https://doi.org/10.1126/science.aan2255
A. Elmouwahidi, E. Bailón-García, A.F. Pérez-Cadenas, J. CasteloQuibén and F. Carrasco-Marín, Carbon, 144,289 (2019); https://doi.org/10.1016/j.carbon.2018.12.038
S. Chen, S. Chandrasekaran, S. Cui and X. Zhang, Inorg. Chem. Commun., 120, 108159 (2020); https://doi.org/10.1016/j.inoche.2020.108159
J. Zhu, J. Roscow, S. Chandrasekaran, L. Deng, P. Zhang, T. He, K. Wang and L. Huang, ChemSusChem, 13, 1275 (2020); https://doi.org/10.1002/cssc.201902685
J. Kim, H.E. Kim and H. Lee, ChemSusChem, 11, 104 (2018); https://doi.org/10.1002/cssc.201701306
V. Kashyap, S.K. Singh and S. Kurungot, ACS Appl. Mater. Interfaces, 8, 20730 (2016); https://doi.org/10.1021/acsami.6b05416
A. Kumar, Y. Zhang, W. Liu and X. Sun, Coord. Chem. Rev., 402, 213047 (2020); https://doi.org/10.1016/j.ccr.2019.213047
Q. Lv, N. Wang, W. Si, Z. Hou, X. Li, X. Wang, F. Zhao, Z. Yang, Y. Zhang and C. Huang, Appl. Catal. B, 261, 118234 (2020); https://doi.org/10.1016/j.apcatb.2019.118234
J. Liang, Y. Jiao, M. Jaroniec and S.Z. Qiao, Angew. Chem. Int. Ed., 51, 11496 (2012); https://doi.org/10.1002/anie.201206720
M. Song, Y. Song, W. Sha, B. Xu, J. Guo and Y. Wu, Catalysts, 10, 141 (2020); https://doi.org/10.3390/catal10010141
J. Li, S. Huang, G. Zhang, Z. Li, S. Tong, J. Wang and M. Wu, Chem. Commun., 56, 1823 (2020); https://doi.org/10.1039/C9CC08980B
S. Chandrasekaran, P. Zhang, F. Peng, C. Bowen, J. Huo and L. Deng, J. Mater. Chem. A Mater. Energy Sustain., 7, 6161 (2019); https://doi.org/10.1039/C8TA12238E
K. Maiti, J. Balamurugan, J. Gautam, N.H. Kim and J.H. Lee, ACS Appl. Mater. Interfaces, 10, 32220 (2018); https://doi.org/10.1021/acsami.8b11406
I.A. Rutkowska, A. Wadas, S. Zoladek, M. Skunik-Nuckowska, K. Miecznikowski, E. Negro, V.D. Noto, A. Zlotorowicz, P. Zelenay and P.J. Kulesza, J. Electrochem. Soc., 165, J3384 (2018); https://doi.org/10.1149/2.0491815jes
J.-K. Lai and I.E. Wachs, ACS Catal., 8, 6537 (2018); https://doi.org/10.1021/acscatal.8b01357
E. Skliri, I.N. Lykakis and G.S. Armatas, RSC Adv., 4, 46170 (2014); https://doi.org/10.1039/C4RA07850K
S. Chandrasekaran, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 290, 465 (2016); https://doi.org/10.1016/j.cej.2016.01.029
S. Chandrasekaran, E.J. Kim, J.S. Chung, I.-K. Yoo, V. Senthilkumar, Y.S. Kim, C.R. Bowen, V. Adamaki and S. Hyun Hur, Chem. Eng. J., 309, 682 (2017); https://doi.org/10.1016/j.cej.2016.10.087
S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng and P. Zhang, Chem. Soc. Rev., 48, 4178 (2019); https://doi.org/10.1039/C8CS00664D
H.-Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo and J. Rossmeisl, Phys. Chem. Chem. Phys., 14, 14010 (2012); https://doi.org/10.1039/c2cp40841d
C. Goswami, K.K. Hazarika and P. Bharali, Mater. Sci. Energy Technol., 1, 117 (2018); https://doi.org/10.1016/j.mset.2018.06.005
H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho and G. Wu, Nano Today, 11, 601 (2016); https://doi.org/10.1016/j.nantod.2016.09.001