Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Ce3+ Co-doping on GdPO4:Tb3+ Nanoparticles: Photoluminescence and Energy Transfer Studies
Corresponding Author(s) : N. Yaiphaba
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
Low temperature synthesis of Tb3+-doped GdPO4 nanoparticles sensitized with Ce3+ (Ce3+ = 0, 3, 5, 7 and 10 at.%) have been reported. Ethylene glycol was used as capping agent as well as reaction medium at 160 ºC. The as-prepared particles crystallized in a monoclinic structure with an average crystallite size of 25-46 nm. From the photoluminescence study, enhanced emission of Tb3+ with co-doping of Ce3+ was attributed to efficient energy transfer from the sensitizer to activator. The luminescence emission intensity increases upto 5 at.% of Ce3+ and then decreases. Less efficient energy transfer from sensitizer to the activator with increasing concentration of sensitizer may be attributed to critical concentration of Ce3+ with the host or dipole-quadrupole interaction amongst the Ce3+ ions. Moreover, presence of -OH group in the samples will make them a potential target for biological labeling and optical devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.B. Barber, C.R. Pollock, L.L. Beecroft and C.K. Ober, Opt. Lett., 22, 1247 (1997); https://doi.org/10.1364/OL.22.001247
- A. Gautam and F.C.J.M. van Veggel, Chem. Mater., 23, 4817 (2011); https://doi.org/10.1021/cm202139u
- T. Jüstel, H. Nikol and C. Ronda, Angew. Chem. Int. Ed., 37, 3084 (1998); https://doi.org/10.1002/(SICI)1521-3773(19981204)37:22<3084::AIDANIE3084>3.0.CO;2-W
- N.S. Singh, N.K. Sahu and D. Bahadur, J. Mater. Chem. C Mater. Opt.Electron. Devices, 2, 548 (2014); https://doi.org/10.1039/C3TC31586J
- E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot and A. Alexandrou, Nano Lett., 4, 2079 (2004); https://doi.org/10.1021/nl049105g
- J.Y. Park, M.J. Baek, E.S. Choi, S. Woo, J.H. Kim, T.J. Kim, J.C. Jung, K.S. Chae, Y. Chang and G.H. Lee, ACS Nano, 3, 3663 (2009); https://doi.org/10.1021/nn900761s
- A.P. Alivisatos, Science, 271, 933 (1996); https://doi.org/10.1126/science.271.5251.933
- Y. Liu, D. Tu, H. Zhu, R. Li, W. Luo and X. Chen, Adv. Mater., 22, 3266 (2010); https://doi.org/10.1002/adma.201000128
- T.T. Taru Chanu, N. Yaiphaba and N.R. Singh, Ceram. Int., 43, 10239 (2017); https://doi.org/10.1016/j.ceramint.2017.05.051
- G. Phaomei, R.S. Ningthoujam, W.R. Singh, R.S. Loitongbam, N.S. Singh, A. Rath, R.R. Juluri and R.K. Vatsa, Dalton Trans., 40, 11571 (2011); https://doi.org/10.1039/c1dt11264c
- N.R. Singh and N.G. Singh, eds.: S.J. Dhoble, V.B. Pawade, H.C. Swart and V. Chopra, Spectroscopy of Lanthanide-Doped Oxide Materials, Woodhead Publishing, Elsevier, UK, Chap. 5 (2019).
- K. Riwotzki, H. Meyssamy, A. Kornowski and M. Haase, J. Phys. Chem. B, 104, 2824 (2000); https://doi.org/10.1021/jp993581r
- E.M. Goldys, K. Drozdowicz-Tomsia, S. Jinjun, D. Dosev, I.M. Kennedy, S. Yatsunenko and M. Godlewski, J. Am. Chem. Soc., 128, 14498 (2006); https://doi.org/10.1021/ja0621602
- R. Meenambal, P. Poojar, S. Geethanath, T.S. Anitha and S. Kannan, J. Biomed. Mater. Res., 107, 1372 (2019); https://doi.org/10.1002/jbm.b.34229
- N. Yaiphaba, R.S. Ningthoujam, N.R. Singh and R.K. Vatsa, Eur. J. Inorg. Chem., 2010, 2682 (2010); https://doi.org/10.1002/ejic.200900968
- J.W. Stouwdam and F.C.J.M. van Veggel, Nano Lett., 2, 733 (2002); https://doi.org/10.1021/nl025562q
- H. Bai, Y. Yang, J. Bao, A. Wu, Y. Qiao, X. Guo, M. Wang, W. Li, Y. Liu and X. Zhu, R. Soc. Open Sci., 7, 192235 (2020); https://doi.org/10.1098/rsos.192235
- J. Dexpert-Ghys, R. Mauricot and M.D. Faucher, J. Lumin., 69, 203 (1996); https://doi.org/10.1016/S0022-2313(96)00094-4
- G. Phaomei and N. Yaiphaba, Adv. Nano Res., 3, 55 (2015); https://doi.org/10.12989/anr.2015.3.2.055
- N. Yaiphaba, R.S. Ningthoujam, N. Shanta Singh, R.K. Vatsa and N. Rajmuhon Singh, J. Lumin., 130, 174 (2010); https://doi.org/10.1016/j.jlumin.2009.08.008
- L. Wang, M. Xu, H. Zhao and D. Jia, New J. Chem., 40, 3086 (2016); https://doi.org/10.1039/C5NJ03148F
- F.N. Sayed, V. Grover, S.V. Godbole and A.K. Tyagi, RSC Adv., 2,1161 (2012); https://doi.org/10.1039/C1RA00651G
- X. Qu, H.K. Yang, G. Pan, J.W. Chung, B.K. Moon, B.C. Choi and J.H. Jeong, Inorg. Chem., 50, 3387 (2011); https://doi.org/10.1021/ic1022467
- H. Sun, X. Zhang and Z. Bai, J. Rare Earths, 31, 231 (2013); https://doi.org/10.1016/S1002-0721(12)60263-4
- N.K. Sahu, R.S. Ningthoujam and D. Bahadur, J. Appl. Phys., 112, 014306 (2012); https://doi.org/10.1063/1.4731644
- R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); https://doi.org/10.1107/S0567739476001551
- N.K. Sahu, N.S. Singh, L. Pradhan and D. Bahadur, Dalton Trans., 43, 11728 (2014); https://doi.org/10.1039/C4DT00792A
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, ed. 5, Wiley: New York (1986).
- C. Peng, C. Li, G. Li, S. Li and J. Lin, Dalton Trans., 41, 8660 (2012); https://doi.org/10.1039/c2dt30325f
- R.S. Ningthoujam, eds.: S.B. Rai and Y. Dwivedi, Enhancement of Photoluminescence by Rare Earth Ions Doping in Semiconductor Inorganic, Nova Science Publishers Inc.: USA (2012).
- K. Kömpe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Möller and M. Haase, Angew. Chem. Int. Ed., 42, 5513 (2003); https://doi.org/10.1002/anie.200351943
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers: New York (1999).
- D.L. Dexter, J. Chem. Phys., 21, 836 (1953); https://doi.org/10.1063/1.1699044
References
D.B. Barber, C.R. Pollock, L.L. Beecroft and C.K. Ober, Opt. Lett., 22, 1247 (1997); https://doi.org/10.1364/OL.22.001247
A. Gautam and F.C.J.M. van Veggel, Chem. Mater., 23, 4817 (2011); https://doi.org/10.1021/cm202139u
T. Jüstel, H. Nikol and C. Ronda, Angew. Chem. Int. Ed., 37, 3084 (1998); https://doi.org/10.1002/(SICI)1521-3773(19981204)37:22<3084::AIDANIE3084>3.0.CO;2-W
N.S. Singh, N.K. Sahu and D. Bahadur, J. Mater. Chem. C Mater. Opt.Electron. Devices, 2, 548 (2014); https://doi.org/10.1039/C3TC31586J
E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot and A. Alexandrou, Nano Lett., 4, 2079 (2004); https://doi.org/10.1021/nl049105g
J.Y. Park, M.J. Baek, E.S. Choi, S. Woo, J.H. Kim, T.J. Kim, J.C. Jung, K.S. Chae, Y. Chang and G.H. Lee, ACS Nano, 3, 3663 (2009); https://doi.org/10.1021/nn900761s
A.P. Alivisatos, Science, 271, 933 (1996); https://doi.org/10.1126/science.271.5251.933
Y. Liu, D. Tu, H. Zhu, R. Li, W. Luo and X. Chen, Adv. Mater., 22, 3266 (2010); https://doi.org/10.1002/adma.201000128
T.T. Taru Chanu, N. Yaiphaba and N.R. Singh, Ceram. Int., 43, 10239 (2017); https://doi.org/10.1016/j.ceramint.2017.05.051
G. Phaomei, R.S. Ningthoujam, W.R. Singh, R.S. Loitongbam, N.S. Singh, A. Rath, R.R. Juluri and R.K. Vatsa, Dalton Trans., 40, 11571 (2011); https://doi.org/10.1039/c1dt11264c
N.R. Singh and N.G. Singh, eds.: S.J. Dhoble, V.B. Pawade, H.C. Swart and V. Chopra, Spectroscopy of Lanthanide-Doped Oxide Materials, Woodhead Publishing, Elsevier, UK, Chap. 5 (2019).
K. Riwotzki, H. Meyssamy, A. Kornowski and M. Haase, J. Phys. Chem. B, 104, 2824 (2000); https://doi.org/10.1021/jp993581r
E.M. Goldys, K. Drozdowicz-Tomsia, S. Jinjun, D. Dosev, I.M. Kennedy, S. Yatsunenko and M. Godlewski, J. Am. Chem. Soc., 128, 14498 (2006); https://doi.org/10.1021/ja0621602
R. Meenambal, P. Poojar, S. Geethanath, T.S. Anitha and S. Kannan, J. Biomed. Mater. Res., 107, 1372 (2019); https://doi.org/10.1002/jbm.b.34229
N. Yaiphaba, R.S. Ningthoujam, N.R. Singh and R.K. Vatsa, Eur. J. Inorg. Chem., 2010, 2682 (2010); https://doi.org/10.1002/ejic.200900968
J.W. Stouwdam and F.C.J.M. van Veggel, Nano Lett., 2, 733 (2002); https://doi.org/10.1021/nl025562q
H. Bai, Y. Yang, J. Bao, A. Wu, Y. Qiao, X. Guo, M. Wang, W. Li, Y. Liu and X. Zhu, R. Soc. Open Sci., 7, 192235 (2020); https://doi.org/10.1098/rsos.192235
J. Dexpert-Ghys, R. Mauricot and M.D. Faucher, J. Lumin., 69, 203 (1996); https://doi.org/10.1016/S0022-2313(96)00094-4
G. Phaomei and N. Yaiphaba, Adv. Nano Res., 3, 55 (2015); https://doi.org/10.12989/anr.2015.3.2.055
N. Yaiphaba, R.S. Ningthoujam, N. Shanta Singh, R.K. Vatsa and N. Rajmuhon Singh, J. Lumin., 130, 174 (2010); https://doi.org/10.1016/j.jlumin.2009.08.008
L. Wang, M. Xu, H. Zhao and D. Jia, New J. Chem., 40, 3086 (2016); https://doi.org/10.1039/C5NJ03148F
F.N. Sayed, V. Grover, S.V. Godbole and A.K. Tyagi, RSC Adv., 2,1161 (2012); https://doi.org/10.1039/C1RA00651G
X. Qu, H.K. Yang, G. Pan, J.W. Chung, B.K. Moon, B.C. Choi and J.H. Jeong, Inorg. Chem., 50, 3387 (2011); https://doi.org/10.1021/ic1022467
H. Sun, X. Zhang and Z. Bai, J. Rare Earths, 31, 231 (2013); https://doi.org/10.1016/S1002-0721(12)60263-4
N.K. Sahu, R.S. Ningthoujam and D. Bahadur, J. Appl. Phys., 112, 014306 (2012); https://doi.org/10.1063/1.4731644
R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); https://doi.org/10.1107/S0567739476001551
N.K. Sahu, N.S. Singh, L. Pradhan and D. Bahadur, Dalton Trans., 43, 11728 (2014); https://doi.org/10.1039/C4DT00792A
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, ed. 5, Wiley: New York (1986).
C. Peng, C. Li, G. Li, S. Li and J. Lin, Dalton Trans., 41, 8660 (2012); https://doi.org/10.1039/c2dt30325f
R.S. Ningthoujam, eds.: S.B. Rai and Y. Dwivedi, Enhancement of Photoluminescence by Rare Earth Ions Doping in Semiconductor Inorganic, Nova Science Publishers Inc.: USA (2012).
K. Kömpe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Möller and M. Haase, Angew. Chem. Int. Ed., 42, 5513 (2003); https://doi.org/10.1002/anie.200351943
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers: New York (1999).
D.L. Dexter, J. Chem. Phys., 21, 836 (1953); https://doi.org/10.1063/1.1699044