Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Coral Limestone Modified by Magnetite and Maghemite Nanocomposites for Sequestration of Lead(II) and Chromium(VI) Ions from Aqueous Solution
Corresponding Author(s) : C.S. Nkutha
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
In present work, a one pot synthesis of magnetic nanocomposites was synthesized by using co-precipitation method in air atmosphere. The synthesis of magnetite and maghemite supported on biogenic coral limestone was done by varying the ratio of Fe(II)/Fe(III) in solution to obtain the two phases of iron oxide and capping with sucrose in air atmosphere. The nanocomposites were characterized by FTIR, where the results showed a distinct peak for Fe-O, while UV/vis showed an absorption in the visible region which is typical of iron oxide. Photoluminescence results showed that the nanocomposites were both red shifted for magnetite-PCLS (PCLS = pristine coral limestone) and magnetite-CCLS (CCLS = calcined coral limestone); while a blue shift and red shift was observed for the maghemite-PCLS and maghemite-CCLS. From the SEM a deviation of sphericity of the nanocomposites, with maghemite having an uneven distribution was observed. Equilibrium was reached within 60 min, of which maghemite showed higher metal uptake. The kinetic data fit PSOM better as compared to PFOM, this means that adsorption was due to the charge density on the surface of the nanocomposites. The good fit for intraparticle diffusion (IPD) also suggested that adsorption was also observed due to mass transfer, it was observed that the rate limiting step was due to surface adsorption. This was in good correlation with the better fit of PSOM. The mechanism of adsorption was found to be better explained by physisorption and the surface was heterogeneous whereby multilayer adsorption was possible. The data was also subjected to Dubinin-Radushkevich isotherm, which suggests that the uptake of the pollutants was due to physisorption. The adsorption process was spontaneous and favourable which is supported by the negative values of Gibb’s free energy for the system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Bassem, Biodiversity Int J., 4, 10 (2020);https://doi.org/10.15406/bij.2020.04.00159
- P.N. Diagboya, H.K. Mmako, E.D. Dikio and F.M. Mtunzi, J. Environ. Chem. Eng., 7, 103461 (2019); https://doi.org/10.1016/j.jece.2019.103461
- H. Ali, E. Khan and I. Ilahi, J. Chem., 2019, 6730305 (2019); https://doi.org/10.1155/2019/6730305
- M.O. Fashola, V.M. Ngole-Jeme and O.O. Babalola, Int. J. Environ. Res. Public Health, 13, 1047 (2016); https://doi.org/10.3390/ijerph13111047
- M.G.J. Hartl, eds.: C.M. Wood, A.P. Farrell and C.J. Brauner, Homeostasis and Toxicology of Non-Essential Metals, Elsevier: London, U.K. (2012).
- N.D. Shooto, E.D. Dikio, D. Wankasi and L.M. Sikhwivhilu, Hem. Ind., 71, 221 (2017); https://doi.org/10.2298/HEMIND160120032S
- M.W. Yap, N.M. Mubarak, J.N. Sahu and E.C. Abdullah, J. Ind. Eng.Chem., 45, 287 (2017); https://doi.org/10.1016/j.jiec.2016.09.036
- P. Wang, T. Shen, X. Li, Y. Tang and Y. Li, ACS Appl. Nano Mater., 3, 1272 (2020); https://doi.org/10.1021/acsanm.9b02036
- M. Eloussaief and M. Benzina, J. Hazard. Mater., 178, 753 (2010); https://doi.org/10.1016/j.jhazmat.2010.02.004
- H.A. Aziz, M.N. Adlan and K.S. Ariffin, Bioresour. Technol., 99, 1578 (2008); https://doi.org/10.1016/j.biortech.2007.04.007
- S. Rajput, L.P. Singh, C.U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci., 492, 176 (2017); https://doi.org/10.1016/j.jcis.2016.11.095
- J. Hu, G. Chen and I.M.C. Lo, Water Res., 39, 4528 (2005); https://doi.org/10.1016/j.watres.2005.05.051
- A.D. Apte, V. Tare and P. Bose, J. Hazard. Mater., 128, 164 (2006); https://doi.org/10.1016/j.jhazmat.2005.07.057
- C.S. Nkutha, P.N. Diagboya, F.M. Mtunzi and E.D. Dikio, Water Environ. Res., 92, 1070 (2020); https://doi.org/10.1002/wer.1303
- H.-J. Lunk, ChemTexts, 1, 6 (2015); https://doi.org/10.1007/s40828-015-0007-z
- A. Godelitsas, J.M. Astilleros, K. Hallam, S. Harissopoulos and A. Putnis, Environ. Sci. Technol., 37, 3351 (2003); https://doi.org/10.1021/es020238i
- J. Karpinska and U. Kotowska, Water, 11, 2017 (2019); https://doi.org/10.3390/w11102017
- D. Alidoust, M. Kawahigashi, S. Yoshizawa, H. Sumida and M. Watanabe, J. Environ. Manage., 150, 103 (2015); https://doi.org/10.1016/j.jenvman.2014.10.032
- J. Hu, G. Chen and I.M.C. Lo, J. Environ. Eng., 132, 709 (2006); https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(709)
- D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, vol. 2 (1998).
- N. D. Shooto, P. M. Thabede, and E. B. Naidoo, South African J. Chem.Eng., 30, 15 (2019); https://doi.org/10.1016/j.sajce.2019.07.002
- A. Demirbas, Energy Convers. Manage., 42, 1357 (2001); https://doi.org/10.1016/S0196-8904(00)00137-0
- N. Sarkar, S.K. Ghosh, S. Bannerjee and K. Aikat, Renew. Energy, 37, 19 (2012); https://doi.org/10.1016/j.renene.2011.06.045
- P. Panneerselvam, N. Morad and K.A. Tan, J. Hazard. Mater., 186, 160 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.102
- V. Patsula, M. Moskvin, S. Dutz and D. Horák, J. Phys. Chem. Solids,88, 24 (2016); https://doi.org/10.1016/j.jpcs.2015.09.008
- Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N. Bahiyah and B.Ahmad, Nanoscale Res. Lett., (2016); https://doi.org/10.1186/s11671-016-1498-2
- S. Mullerova, E. Baldikova, J. Prochazkova, K. Pospiskova and I.Safarik, Mater. Chem. Phys., 225, 174 (2019); https://doi.org/10.1016/j.matchemphys.2018.12.074
- M.T. Hossain, M.M. Hossain, M.H.A. Begum, M. Shahjahan, M.M. Islam and B. Saha, Bangladesh J. Sci. Ind. Res., 53, 219 (2018); https://doi.org/10.3329/bjsir.v53i3.38269
- F. Yazdani and M. Seddigh, Mater. Chem. Phys., 184, 318 (2016); https://doi.org/10.1016/j.matchemphys.2016.09.058
- T. Tsuzuki and P.G. McCormick, Acta Mater., 48, 2795 (2000); https://doi.org/10.1016/S1359-6454(00)00100-2
- K. Boustani, A. Shokri, S.F. Shayesteh and A. Jafari, J. Supercond. Nov. Magn., 33, 1879 (2020); https://doi.org/10.1007/s10948-020-05436-y
- J.K. Oh and J.M. Park, Prog. Polym. Sci., 36, 168 (2011); https://doi.org/10.1016/j.progpolymsci.2010.08.005
- M. Mikhaylova, D.K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos and M. Muhammed, Langmuir, 20, 2472 (2004); https://doi.org/10.1021/la035648e
- W.S. Peternele, V. Monge Fuentes, M.L. Fascineli, J. Rodrigues da Silva, R.C. Silva, C.M. Lucci and R. Bentes de Azevedo, J. Nanomater., 2014, 1 (2014); https://doi.org/10.1155/2014/682985
- L. Mohammed, H.G. Gomaa, D. Ragab and J. Zhu, Particuology, 30, 1 (2017); https://doi.org/10.1016/j.partic.2016.06.001
- X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu and N. Guan, J. Phys. Chem. C, 113, 16002 (2009); https://doi.org/10.1021/jp9038682
- A. Hajdú, E. Illés, E. Tombácz and I. Borbáth, Colloids Surf. A Physicochem. Eng. Asp., 347, 104 (2009); https://doi.org/10.1016/j.colsurfa.2008.12.039
- Atul, M. Kumar, A. Sharma, I.K. Maurya, A. Thakur and S. Kumar, J. Taibah Univ. Sci., 13, 280 (2019); https://doi.org/10.1080/16583655.2019.1565437
- A. Lim and A. Aris, Rev. Environ. Sci. Biotechnol., 13, 163 (2014); https://doi.org/10.1007/s11157-013-9330-2
- E. Tombácz, A. Majzik, ZS. Horvát and E. Illés, Rom. Rep. Phys., 58, 281 (2006).
- C. Su, J. Hazard. Mater., 322, 48 (2017); https://doi.org/10.1016/j.jhazmat.2016.06.060
- M. Aghazadeh, I. Karimzadeh, M.R. Ganjali and M.M. Morad, Mater. Lett., 196, 392 (2017); https://doi.org/10.1016/j.matlet.2017.03.064
- L.P. Hoang, T.M.P. Nguyen, H.T. Van, T.K.D. Hoang, X.H. Vu, T.V. Nguyen and N.X. Ca, Water Air Soil Pollut., 231, 28 (2020); https://doi.org/10.1007/s11270-020-4406-4
- M.T. Samadi, R. Nourozi, M.H. Mehdinejad and R. Aminzadeh, Iran. J. Health Environ., 5, 479 (2013).
- R. Shokohi, H.R. Ehsani and M. Tarlani Azar, J. Environ. Sci. Technol.,16, 109 (2014).
- M. Malakootian, S. Mohammadi, N. Amirmahani, Z. Nasiri and A. Nasiri, J. Commun. Health Res., 5, 73 (2016).
- C.S. Nkutha, N.D. Shooto and E.B. Naidoo, South African J. Chem.Eng, 34, 151 (2020); https://doi.org/10.1016/j.sajce.2020.08.003
- C.S. Nkutha, N.D. Shooto and E.B. Naidoo, Asian J. Chem., 32, 2624 (2020); https://doi.org/10.14233/ajchem.2020.22815
- A.J. Andersson and D. Gledhill, Annu. Rev. Mar. Sci., 5, 321 (2013); https://doi.org/10.1146/annurev-marine-121211-172241
- Y.H. Song, J.C. Park, C.S. Kim, D.S. Hwang, H.J. Cha and J.H. Seo, Biotechnol. Bioprocess Eng.; BBE, 23, 341 (2018); https://doi.org/10.1007/s12257-018-0118-7
- V. Ramasamy, P. Anand and G. Suresh, Int. J. Mater. Sci., 12, 499 (2017).
- H.A. Tajmir-Riahi, J. Inorg. Biochem., 31, 255 (1987); https://doi.org/10.1016/0162-0134(87)80080-6
- H.A. Tajmir-Riahi, J. Inorg. Biochem., 27, 123 (1986); https://doi.org/10.1016/0162-0134(86)80013-7
- S. Alibeigi and M.R. Vaezi, Chem. Eng. Technol., 31, 1591 (2008); https://doi.org/10.1002/ceat.200800093
- D. Sivakumar, M. Mohamed Rafi, B. Sathyaseelan, K.M. Prem Nazeer and A.M. Ayisha Begam, Int. J. Nanodimens., 8, 257 (2017).
- W. Agudelo, Y. Montoya and J. Bustamante, Dyna, 85, 69 (2018); https://doi.org/10.15446/dyna.v85n206.72136
- M. Kumari, C.U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci., 442, 120 (2015); https://doi.org/10.1016/j.jcis.2014.09.012
- C.S. Doyle, T. Kendelewicz and G.E. Brown Jr., Appl. Surf. Sci., 230, 260 (2004); https://doi.org/10.1016/j.apsusc.2004.02.035
- E. Hao, G.C. Schatz and J.T. Hupp, J. Fluoresc., 14, 331 (2004); https://doi.org/10.1023/B:JOFL.0000031815.71450.74
- E. Filippo, A. Serra and D. Manno, Colloids Surf. A Physicochem. Eng. Asp., 348, 205 (2009); https://doi.org/10.1016/j.colsurfa.2009.07.023
- W. Yang, F. Gao, G. Wei and L. An, Cryst. Growth Des., 10, 29 (2010); https://doi.org/10.1021/cg901148q
- H. El Ghandoor, H.M. Zidan, M.M.H. Khalil and M.I.M. Ismail, Int. J. Electrochem. Sci., 7, 5734 (2012).
- H. Zhou, B. Yan, J. Lai, H. Liu, A. Ma, W. Chen, X. Jin, W. Zhao and G. Zhang, J. Ind. Eng. Chem., 58, 334 (2018); https://doi.org/10.1016/j.jiec.2017.09.046
- H. Liu and C. Di Valentin, J. Phys. Chem. C, 121, 25736 (2017); https://doi.org/10.1021/acs.jpcc.7b09387
- S.K. Kulkarni, Nanotechnology: Principles and Practices, Capital Publishing Company, New Delhi, edn 1 (2007).
- S. Rajput, C.U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci.,468, 334 (2016); https://doi.org/10.1016/j.jcis.2015.12.008
- J. Zhang, Sep. Purif. Technol., 229, 115832 (2019); https://doi.org/10.1016/j.seppur.2019.115832
- Q. Hu, Q. Wang, C. Feng, Z. Zhang, Z. Lei, and K. Shimizu, J. Mol. Liq., 254, 20 (2018); https://doi.org/10.1016/j.molliq.2018.01.073
- W. Plazinski, W. Rudzinski and A. Plazinska, Adv. Colloid Interface Sci., 152, 2 (2009); https://doi.org/10.1016/j.cis.2009.07.009
- G.Q. Wang, X.G. Yuan and K.T. Yu, Ind. Eng. Chem. Res., 44, 8715 (2005); https://doi.org/10.1021/ie050017w
- A.U. Itodo, F.W. Abdulrahman, L.G. Hassan, S.A. Maigandi and H.U. Itodo, Researcher, 2, 74 (2010).
- C.R. Girish and V.R. Murty, Int. J. Chem. Eng., 2016, 1 (2016); https://doi.org/10.1155/2016/5809505
- A. Nimibofa, E. Tobin, S. David, W. Donbebe and D. Dixon, Hem. Ind. Ind., 71, 429 (2017); https://doi.org/10.2298/HEMIND150608005N
- X. Chen, Inf., 6, 14 (2015); https://doi.org/10.3390/info6010014
- N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/3039817
- S. Liu, J. Colloid Interface Sci., 450, 224 (2015);https://doi.org/10.1016/j.jcis.2015.03.013
- E.L. Morifi, A.E. Ofomaja and K. Pillay, J. Environ. Chem. Eng., 8,103822 (2020);https://doi.org/10.1016/j.jece.2020.103822
- Q. Hu and Z. Zhang, J. Mol. Liq., 277, 646 (2019); https://doi.org/10.1016/j.molliq.2019.01.005
- A.N. Ebelegi, N. Ayawei and D. Wankasi, Open J. Phys. Chem., 10, 166 (2020); https://doi.org/10.4236/ojpc.2020.103010
- A.L. Myers, AIChE J., 48, 145 (2002); https://doi.org/10.1002/aic.690480115
- N.D. Shooto, Surf. Interfaces, 20, 100624 (2020); https://doi.org/10.1016/j.surfin.2020.100624
- L. Giraldo, A. Erto and J.C. Moreno-Piraján, Adsorption, 19, 465 (2013); https://doi.org/10.1007/s10450-012-9468-1
- V.E. Pakade, T.D. Ntuli and A.E. Ofomaja, Appl. Water Sci., 7, 3015 (2017); https://doi.org/10.1007/s13201-016-0412-5
- P.M. Thabede, N.D. Shooto, T. Xaba and E.B. Naidoo, J. Environ.Chem. Eng., 8, 104045 (2020); https://doi.org/10.1016/j.jece.2020.104045
- Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey and P.R. Solanki, J. Environ. Chem. Eng., 4, 4237 (2016); https://doi.org/10.1016/j.jece.2016.09.026
- A.R. Mahdavian and M.A.S. Mirrahimi, Chem. Eng. J., 159, 264 (2010); https://doi.org/10.1016/j.cej.2010.02.041
- L.P. Lingamdinne, J.R. Koduru and R.R. Karri, Green Synthesis of Iron Oxide Nanoparticles for Lead Removal from Aqueous Solutions, Intech. Open, vol. 805, no. III, pp. 122–127 (2019); https://doi.org/10.4028/www.scientific.net/KEM.805.122
References
S.M. Bassem, Biodiversity Int J., 4, 10 (2020);https://doi.org/10.15406/bij.2020.04.00159
P.N. Diagboya, H.K. Mmako, E.D. Dikio and F.M. Mtunzi, J. Environ. Chem. Eng., 7, 103461 (2019); https://doi.org/10.1016/j.jece.2019.103461
H. Ali, E. Khan and I. Ilahi, J. Chem., 2019, 6730305 (2019); https://doi.org/10.1155/2019/6730305
M.O. Fashola, V.M. Ngole-Jeme and O.O. Babalola, Int. J. Environ. Res. Public Health, 13, 1047 (2016); https://doi.org/10.3390/ijerph13111047
M.G.J. Hartl, eds.: C.M. Wood, A.P. Farrell and C.J. Brauner, Homeostasis and Toxicology of Non-Essential Metals, Elsevier: London, U.K. (2012).
N.D. Shooto, E.D. Dikio, D. Wankasi and L.M. Sikhwivhilu, Hem. Ind., 71, 221 (2017); https://doi.org/10.2298/HEMIND160120032S
M.W. Yap, N.M. Mubarak, J.N. Sahu and E.C. Abdullah, J. Ind. Eng.Chem., 45, 287 (2017); https://doi.org/10.1016/j.jiec.2016.09.036
P. Wang, T. Shen, X. Li, Y. Tang and Y. Li, ACS Appl. Nano Mater., 3, 1272 (2020); https://doi.org/10.1021/acsanm.9b02036
M. Eloussaief and M. Benzina, J. Hazard. Mater., 178, 753 (2010); https://doi.org/10.1016/j.jhazmat.2010.02.004
H.A. Aziz, M.N. Adlan and K.S. Ariffin, Bioresour. Technol., 99, 1578 (2008); https://doi.org/10.1016/j.biortech.2007.04.007
S. Rajput, L.P. Singh, C.U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci., 492, 176 (2017); https://doi.org/10.1016/j.jcis.2016.11.095
J. Hu, G. Chen and I.M.C. Lo, Water Res., 39, 4528 (2005); https://doi.org/10.1016/j.watres.2005.05.051
A.D. Apte, V. Tare and P. Bose, J. Hazard. Mater., 128, 164 (2006); https://doi.org/10.1016/j.jhazmat.2005.07.057
C.S. Nkutha, P.N. Diagboya, F.M. Mtunzi and E.D. Dikio, Water Environ. Res., 92, 1070 (2020); https://doi.org/10.1002/wer.1303
H.-J. Lunk, ChemTexts, 1, 6 (2015); https://doi.org/10.1007/s40828-015-0007-z
A. Godelitsas, J.M. Astilleros, K. Hallam, S. Harissopoulos and A. Putnis, Environ. Sci. Technol., 37, 3351 (2003); https://doi.org/10.1021/es020238i
J. Karpinska and U. Kotowska, Water, 11, 2017 (2019); https://doi.org/10.3390/w11102017
D. Alidoust, M. Kawahigashi, S. Yoshizawa, H. Sumida and M. Watanabe, J. Environ. Manage., 150, 103 (2015); https://doi.org/10.1016/j.jenvman.2014.10.032
J. Hu, G. Chen and I.M.C. Lo, J. Environ. Eng., 132, 709 (2006); https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(709)
D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, vol. 2 (1998).
N. D. Shooto, P. M. Thabede, and E. B. Naidoo, South African J. Chem.Eng., 30, 15 (2019); https://doi.org/10.1016/j.sajce.2019.07.002
A. Demirbas, Energy Convers. Manage., 42, 1357 (2001); https://doi.org/10.1016/S0196-8904(00)00137-0
N. Sarkar, S.K. Ghosh, S. Bannerjee and K. Aikat, Renew. Energy, 37, 19 (2012); https://doi.org/10.1016/j.renene.2011.06.045
P. Panneerselvam, N. Morad and K.A. Tan, J. Hazard. Mater., 186, 160 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.102
V. Patsula, M. Moskvin, S. Dutz and D. Horák, J. Phys. Chem. Solids,88, 24 (2016); https://doi.org/10.1016/j.jpcs.2015.09.008
Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N. Bahiyah and B.Ahmad, Nanoscale Res. Lett., (2016); https://doi.org/10.1186/s11671-016-1498-2
S. Mullerova, E. Baldikova, J. Prochazkova, K. Pospiskova and I.Safarik, Mater. Chem. Phys., 225, 174 (2019); https://doi.org/10.1016/j.matchemphys.2018.12.074
M.T. Hossain, M.M. Hossain, M.H.A. Begum, M. Shahjahan, M.M. Islam and B. Saha, Bangladesh J. Sci. Ind. Res., 53, 219 (2018); https://doi.org/10.3329/bjsir.v53i3.38269
F. Yazdani and M. Seddigh, Mater. Chem. Phys., 184, 318 (2016); https://doi.org/10.1016/j.matchemphys.2016.09.058
T. Tsuzuki and P.G. McCormick, Acta Mater., 48, 2795 (2000); https://doi.org/10.1016/S1359-6454(00)00100-2
K. Boustani, A. Shokri, S.F. Shayesteh and A. Jafari, J. Supercond. Nov. Magn., 33, 1879 (2020); https://doi.org/10.1007/s10948-020-05436-y
J.K. Oh and J.M. Park, Prog. Polym. Sci., 36, 168 (2011); https://doi.org/10.1016/j.progpolymsci.2010.08.005
M. Mikhaylova, D.K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos and M. Muhammed, Langmuir, 20, 2472 (2004); https://doi.org/10.1021/la035648e
W.S. Peternele, V. Monge Fuentes, M.L. Fascineli, J. Rodrigues da Silva, R.C. Silva, C.M. Lucci and R. Bentes de Azevedo, J. Nanomater., 2014, 1 (2014); https://doi.org/10.1155/2014/682985
L. Mohammed, H.G. Gomaa, D. Ragab and J. Zhu, Particuology, 30, 1 (2017); https://doi.org/10.1016/j.partic.2016.06.001
X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu and N. Guan, J. Phys. Chem. C, 113, 16002 (2009); https://doi.org/10.1021/jp9038682
A. Hajdú, E. Illés, E. Tombácz and I. Borbáth, Colloids Surf. A Physicochem. Eng. Asp., 347, 104 (2009); https://doi.org/10.1016/j.colsurfa.2008.12.039
Atul, M. Kumar, A. Sharma, I.K. Maurya, A. Thakur and S. Kumar, J. Taibah Univ. Sci., 13, 280 (2019); https://doi.org/10.1080/16583655.2019.1565437
A. Lim and A. Aris, Rev. Environ. Sci. Biotechnol., 13, 163 (2014); https://doi.org/10.1007/s11157-013-9330-2
E. Tombácz, A. Majzik, ZS. Horvát and E. Illés, Rom. Rep. Phys., 58, 281 (2006).
C. Su, J. Hazard. Mater., 322, 48 (2017); https://doi.org/10.1016/j.jhazmat.2016.06.060
M. Aghazadeh, I. Karimzadeh, M.R. Ganjali and M.M. Morad, Mater. Lett., 196, 392 (2017); https://doi.org/10.1016/j.matlet.2017.03.064
L.P. Hoang, T.M.P. Nguyen, H.T. Van, T.K.D. Hoang, X.H. Vu, T.V. Nguyen and N.X. Ca, Water Air Soil Pollut., 231, 28 (2020); https://doi.org/10.1007/s11270-020-4406-4
M.T. Samadi, R. Nourozi, M.H. Mehdinejad and R. Aminzadeh, Iran. J. Health Environ., 5, 479 (2013).
R. Shokohi, H.R. Ehsani and M. Tarlani Azar, J. Environ. Sci. Technol.,16, 109 (2014).
M. Malakootian, S. Mohammadi, N. Amirmahani, Z. Nasiri and A. Nasiri, J. Commun. Health Res., 5, 73 (2016).
C.S. Nkutha, N.D. Shooto and E.B. Naidoo, South African J. Chem.Eng, 34, 151 (2020); https://doi.org/10.1016/j.sajce.2020.08.003
C.S. Nkutha, N.D. Shooto and E.B. Naidoo, Asian J. Chem., 32, 2624 (2020); https://doi.org/10.14233/ajchem.2020.22815
A.J. Andersson and D. Gledhill, Annu. Rev. Mar. Sci., 5, 321 (2013); https://doi.org/10.1146/annurev-marine-121211-172241
Y.H. Song, J.C. Park, C.S. Kim, D.S. Hwang, H.J. Cha and J.H. Seo, Biotechnol. Bioprocess Eng.; BBE, 23, 341 (2018); https://doi.org/10.1007/s12257-018-0118-7
V. Ramasamy, P. Anand and G. Suresh, Int. J. Mater. Sci., 12, 499 (2017).
H.A. Tajmir-Riahi, J. Inorg. Biochem., 31, 255 (1987); https://doi.org/10.1016/0162-0134(87)80080-6
H.A. Tajmir-Riahi, J. Inorg. Biochem., 27, 123 (1986); https://doi.org/10.1016/0162-0134(86)80013-7
S. Alibeigi and M.R. Vaezi, Chem. Eng. Technol., 31, 1591 (2008); https://doi.org/10.1002/ceat.200800093
D. Sivakumar, M. Mohamed Rafi, B. Sathyaseelan, K.M. Prem Nazeer and A.M. Ayisha Begam, Int. J. Nanodimens., 8, 257 (2017).
W. Agudelo, Y. Montoya and J. Bustamante, Dyna, 85, 69 (2018); https://doi.org/10.15446/dyna.v85n206.72136
M. Kumari, C.U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci., 442, 120 (2015); https://doi.org/10.1016/j.jcis.2014.09.012
C.S. Doyle, T. Kendelewicz and G.E. Brown Jr., Appl. Surf. Sci., 230, 260 (2004); https://doi.org/10.1016/j.apsusc.2004.02.035
E. Hao, G.C. Schatz and J.T. Hupp, J. Fluoresc., 14, 331 (2004); https://doi.org/10.1023/B:JOFL.0000031815.71450.74
E. Filippo, A. Serra and D. Manno, Colloids Surf. A Physicochem. Eng. Asp., 348, 205 (2009); https://doi.org/10.1016/j.colsurfa.2009.07.023
W. Yang, F. Gao, G. Wei and L. An, Cryst. Growth Des., 10, 29 (2010); https://doi.org/10.1021/cg901148q
H. El Ghandoor, H.M. Zidan, M.M.H. Khalil and M.I.M. Ismail, Int. J. Electrochem. Sci., 7, 5734 (2012).
H. Zhou, B. Yan, J. Lai, H. Liu, A. Ma, W. Chen, X. Jin, W. Zhao and G. Zhang, J. Ind. Eng. Chem., 58, 334 (2018); https://doi.org/10.1016/j.jiec.2017.09.046
H. Liu and C. Di Valentin, J. Phys. Chem. C, 121, 25736 (2017); https://doi.org/10.1021/acs.jpcc.7b09387
S.K. Kulkarni, Nanotechnology: Principles and Practices, Capital Publishing Company, New Delhi, edn 1 (2007).
S. Rajput, C.U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci.,468, 334 (2016); https://doi.org/10.1016/j.jcis.2015.12.008
J. Zhang, Sep. Purif. Technol., 229, 115832 (2019); https://doi.org/10.1016/j.seppur.2019.115832
Q. Hu, Q. Wang, C. Feng, Z. Zhang, Z. Lei, and K. Shimizu, J. Mol. Liq., 254, 20 (2018); https://doi.org/10.1016/j.molliq.2018.01.073
W. Plazinski, W. Rudzinski and A. Plazinska, Adv. Colloid Interface Sci., 152, 2 (2009); https://doi.org/10.1016/j.cis.2009.07.009
G.Q. Wang, X.G. Yuan and K.T. Yu, Ind. Eng. Chem. Res., 44, 8715 (2005); https://doi.org/10.1021/ie050017w
A.U. Itodo, F.W. Abdulrahman, L.G. Hassan, S.A. Maigandi and H.U. Itodo, Researcher, 2, 74 (2010).
C.R. Girish and V.R. Murty, Int. J. Chem. Eng., 2016, 1 (2016); https://doi.org/10.1155/2016/5809505
A. Nimibofa, E. Tobin, S. David, W. Donbebe and D. Dixon, Hem. Ind. Ind., 71, 429 (2017); https://doi.org/10.2298/HEMIND150608005N
X. Chen, Inf., 6, 14 (2015); https://doi.org/10.3390/info6010014
N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/3039817
S. Liu, J. Colloid Interface Sci., 450, 224 (2015);https://doi.org/10.1016/j.jcis.2015.03.013
E.L. Morifi, A.E. Ofomaja and K. Pillay, J. Environ. Chem. Eng., 8,103822 (2020);https://doi.org/10.1016/j.jece.2020.103822
Q. Hu and Z. Zhang, J. Mol. Liq., 277, 646 (2019); https://doi.org/10.1016/j.molliq.2019.01.005
A.N. Ebelegi, N. Ayawei and D. Wankasi, Open J. Phys. Chem., 10, 166 (2020); https://doi.org/10.4236/ojpc.2020.103010
A.L. Myers, AIChE J., 48, 145 (2002); https://doi.org/10.1002/aic.690480115
N.D. Shooto, Surf. Interfaces, 20, 100624 (2020); https://doi.org/10.1016/j.surfin.2020.100624
L. Giraldo, A. Erto and J.C. Moreno-Piraján, Adsorption, 19, 465 (2013); https://doi.org/10.1007/s10450-012-9468-1
V.E. Pakade, T.D. Ntuli and A.E. Ofomaja, Appl. Water Sci., 7, 3015 (2017); https://doi.org/10.1007/s13201-016-0412-5
P.M. Thabede, N.D. Shooto, T. Xaba and E.B. Naidoo, J. Environ.Chem. Eng., 8, 104045 (2020); https://doi.org/10.1016/j.jece.2020.104045
Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey and P.R. Solanki, J. Environ. Chem. Eng., 4, 4237 (2016); https://doi.org/10.1016/j.jece.2016.09.026
A.R. Mahdavian and M.A.S. Mirrahimi, Chem. Eng. J., 159, 264 (2010); https://doi.org/10.1016/j.cej.2010.02.041
L.P. Lingamdinne, J.R. Koduru and R.R. Karri, Green Synthesis of Iron Oxide Nanoparticles for Lead Removal from Aqueous Solutions, Intech. Open, vol. 805, no. III, pp. 122–127 (2019); https://doi.org/10.4028/www.scientific.net/KEM.805.122