Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Crystal Structure, Spectroscopic and Antimicrobial Properties of Ruthenium Complexes of Vinyl Imidazole and 4-Ethylaminomethyl Pyridine Ligands
Corresponding Author(s) : Chitrani Medhi
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
Ruthenium complexes of vinylimidazole (VIMD) and 4-ethylaminomethyl pyridine (EMP) ligands were synthesized and characterized by XRD and spectroscopic methods. The binding of these Ru(IIII) complexes with calf thymus-DNA has been studied by UV-visible spectroscopic and electrochemical studies. A prominent increase in the intensity of fluorescence spectra of these complexes with CT-DNA was observed and a distinct UV-visible spectral shift in presence of CT-DNA is probably due to an interaction of these complexes with CT-DNA. The evidence of DNA binding has been found from the change in the intensity of fluorescence and UV visible spectra. Also, the electron transfer ability of these complexes is very important in order to rationalize their activity towards the biological system therefore, we have studied the electrochemical studies of these complexes by using cyclic voltammetry. From this study, it is possible to draw some ideas on electrochemical potentials of the complexes relevant to biological reduction possibly Ru(III)/Ru(II). Both complexes were also tested for antimicrobial activity against bacterial strain and responses well as antimicrobial agent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Kostova, Curr. Med. Chem., 13, 1085 (2006); https://doi.org/10.2174/092986706776360941
- A.M. Bonin, J.A. Yanez, C. Fukuda, X.W. Teng, C.T. Dillon, T.W. Hambley, P.A. Lay and N.M. Davies, Cancer Chemother. Pharmacol., 66, 755 (2010); https://doi.org/10.1007/s00280-009-1220-5
- B. Rosenberg, L. Van Camp and T. Krigas, Nature, 205, 698 (1965); https://doi.org/10.1038/205698a0
- M.J. Clarke, F. Zhu and D. Frasca, Chem. Rev., 99, 2511 (1999); https://doi.org/10.1021/cr9804238
- A. Vessieres, W. Beck, E. Hillard and G. Jaouen, Dalton Trans., 529 (2006); https://doi.org/10.1039/B509984F
- C.M. Dupureur and J.K. Barton, J. Inorg. Chem., 36, 33 (1997); https://doi.org/10.1021/ic960738a
- A. Mukherjee, R. Lavery, B. Bagchi and J.T. Hynes, J. Am. Chem. Soc., 130, 9747 (2008); https://doi.org/10.1021/ja8001666
- M.J. Clarke, Coord. Chem. Rev., 236, 209 (2003); https://doi.org/10.1016/S0010-8545(02)00312-0
- M.J. Clarke, Met. Ions Biol. Syst., 42, 425 (2004).
- S. Leijen, S.A. Burgers, P. Baas, D. Pluim, M. Tibben, E. van Werkhoven, E. Alessio, E. Sava, G. Beijnen and J.H. Schellens, Invest. New Drugs, 33, 201 (2015); https://doi.org/10.1007/s10637-014-0179-1
- R.L.S.R. Santos, A. Bergamo, G. Sava and D. de Oliveira Silva, Polyhedron, 42, 175 (2012); https://doi.org/10.1016/j.poly.2012.05.012
- N. Mayorek, N. Naftali-Shani and N. Grunewald, PLoS One, 5, e12715 (2010); https://doi.org/10.1371/journal.pone.0012715
- M. Ogino, H. Hisatomi, M. Murata and M. Hanazono, J. Cancer Res., 90, 758 (1999).
- Y. Eli, F. Przedecki, G. Levin, N. Kariv and A. Raz, Biochem. Pharmacol.,61, 565 (2001); https://doi.org/10.1016/S0006-2952(00)00578-5
- C.T. Dillon, T.W. Hambley, B.J. Kennedy, P.A. Lay, Q. Zhou, N.M. Davies, J.R. Biffin and H.L. Regtop, Chem. Res. Toxicol., 16, 28 (2003); https://doi.org/10.1021/tx020078o
- F. Dimiza, A.N. Papadopoulos, V. Tangoulis, V. Psycharis, C.P. Raptopoulou, D.P. Kessissoglou and G. Psomas, Dalton Trans., 39, 4517 (2010); https://doi.org/10.1039/b927472c
- M. Benadiba, R.R.P. dos Santos, D.O. Silva and A. Colquhoun, J. Inorg. Biochem., 104, 928 (2010); https://doi.org/10.1016/j.jinorgbio.2010.04.011
- G. Ribeiro, M. Benadiba, A. Colquhoun and D. de Oliveira Silva, Polyhedron, 27, 1131 (2008); https://doi.org/10.1016/j.poly.2007.12.011
- A.K.-W. Tse, H.-H. Cao, C.-Y. Cheng, H.-Y. Kwan, H. Yu, W.-F. Fong and Z.-L. Yu, J. Invest. Dermatol., 134, 1397 (2014); https://doi.org/10.1038/jid.2013.471
- M.G. Chung, H.W. Kim, B.R. Kim, Y.B. Kim and Y.H. Rhee, Int. J. Biol. Macromol., 50, 310 (2012); https://doi.org/10.1016/j.ijbiomac.2011.12.007
- L. Cheng, K.G. Abhilash and R. Breslow, Proc. Natl. Acad. Sci. USA, 109, 12884 (2012); https://doi.org/10.1073/pnas.1210846109
- G. Psomas and D.P. Kessissoglou, Dalton Trans., 42, 6252 (2013); https://doi.org/10.1039/c3dt50268f
- G. Aridoss, S. Amirthaganesan, N. Ashok Kumar, J.T. Kim, K.T. Lim, S. Kabilan and Y.T. Jeong, Bioorg. Med. Chem. Lett., 18, 6542 (2008); https://doi.org/10.1016/j.bmcl.2008.10.045
- C.G. Hartinger, M.A. Jakupec, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P.J. Dyson and B.K. Keppler, Chem. Biodivers.,5, 2140 (2008); https://doi.org/10.1002/cbdv.200890195
- S. Chennamaneni, B. Zhong, R. Lama and B. Su, Eur. J. Med. Chem., 56, 17 (2012); https://doi.org/10.1016/j.ejmech.2012.08.005
- V. Feyer, O. Plekan, R. Richter, M. Coreno, M. de Simone, K.C. Prince, A.B. Trofimov, I.L. Zaytseva and J. Schirmer, J. Phys. Chem., 114, 10270 (2010); https://doi.org/10.1021/jp105062c
- A.K. Chandra, D. Michalska, R. Wysokiñsky and T. Zeegers-Huyskens, J. Phys. Chem. A, 108, 9593 (2004); https://doi.org/10.1021/jp040206c
- S. Karabasannavar, P. Allolli, I.N. Shaikh and B.M. Kalshetty, Indian J. Pharm. Educ. Res., 51, 490 (2017); https://doi.org/10.5530/ijper.51.3.77
- M. Li, T. Lan, Z. Lin, C. Yi and G.-N. Chen, J. Inorg. Chem., 18, 993 (2013); https://doi.org/10.1007/s00775-013-1048-7
- I. Ott, K. Schmidt, B. Kircher, P. Schumacher, T. Wiglenda and R. Gust, J. Med. Chem., 48, 622 (2005); https://doi.org/10.1021/jm049326z
- F. Yuan, X. Chen, Y. Zhou, F. Yang, Q. Zhang and J. Liu, J. Coord. Chem., 65, 1246 (2012); https://doi.org/10.1080/00958972.2012.670228
References
I. Kostova, Curr. Med. Chem., 13, 1085 (2006); https://doi.org/10.2174/092986706776360941
A.M. Bonin, J.A. Yanez, C. Fukuda, X.W. Teng, C.T. Dillon, T.W. Hambley, P.A. Lay and N.M. Davies, Cancer Chemother. Pharmacol., 66, 755 (2010); https://doi.org/10.1007/s00280-009-1220-5
B. Rosenberg, L. Van Camp and T. Krigas, Nature, 205, 698 (1965); https://doi.org/10.1038/205698a0
M.J. Clarke, F. Zhu and D. Frasca, Chem. Rev., 99, 2511 (1999); https://doi.org/10.1021/cr9804238
A. Vessieres, W. Beck, E. Hillard and G. Jaouen, Dalton Trans., 529 (2006); https://doi.org/10.1039/B509984F
C.M. Dupureur and J.K. Barton, J. Inorg. Chem., 36, 33 (1997); https://doi.org/10.1021/ic960738a
A. Mukherjee, R. Lavery, B. Bagchi and J.T. Hynes, J. Am. Chem. Soc., 130, 9747 (2008); https://doi.org/10.1021/ja8001666
M.J. Clarke, Coord. Chem. Rev., 236, 209 (2003); https://doi.org/10.1016/S0010-8545(02)00312-0
M.J. Clarke, Met. Ions Biol. Syst., 42, 425 (2004).
S. Leijen, S.A. Burgers, P. Baas, D. Pluim, M. Tibben, E. van Werkhoven, E. Alessio, E. Sava, G. Beijnen and J.H. Schellens, Invest. New Drugs, 33, 201 (2015); https://doi.org/10.1007/s10637-014-0179-1
R.L.S.R. Santos, A. Bergamo, G. Sava and D. de Oliveira Silva, Polyhedron, 42, 175 (2012); https://doi.org/10.1016/j.poly.2012.05.012
N. Mayorek, N. Naftali-Shani and N. Grunewald, PLoS One, 5, e12715 (2010); https://doi.org/10.1371/journal.pone.0012715
M. Ogino, H. Hisatomi, M. Murata and M. Hanazono, J. Cancer Res., 90, 758 (1999).
Y. Eli, F. Przedecki, G. Levin, N. Kariv and A. Raz, Biochem. Pharmacol.,61, 565 (2001); https://doi.org/10.1016/S0006-2952(00)00578-5
C.T. Dillon, T.W. Hambley, B.J. Kennedy, P.A. Lay, Q. Zhou, N.M. Davies, J.R. Biffin and H.L. Regtop, Chem. Res. Toxicol., 16, 28 (2003); https://doi.org/10.1021/tx020078o
F. Dimiza, A.N. Papadopoulos, V. Tangoulis, V. Psycharis, C.P. Raptopoulou, D.P. Kessissoglou and G. Psomas, Dalton Trans., 39, 4517 (2010); https://doi.org/10.1039/b927472c
M. Benadiba, R.R.P. dos Santos, D.O. Silva and A. Colquhoun, J. Inorg. Biochem., 104, 928 (2010); https://doi.org/10.1016/j.jinorgbio.2010.04.011
G. Ribeiro, M. Benadiba, A. Colquhoun and D. de Oliveira Silva, Polyhedron, 27, 1131 (2008); https://doi.org/10.1016/j.poly.2007.12.011
A.K.-W. Tse, H.-H. Cao, C.-Y. Cheng, H.-Y. Kwan, H. Yu, W.-F. Fong and Z.-L. Yu, J. Invest. Dermatol., 134, 1397 (2014); https://doi.org/10.1038/jid.2013.471
M.G. Chung, H.W. Kim, B.R. Kim, Y.B. Kim and Y.H. Rhee, Int. J. Biol. Macromol., 50, 310 (2012); https://doi.org/10.1016/j.ijbiomac.2011.12.007
L. Cheng, K.G. Abhilash and R. Breslow, Proc. Natl. Acad. Sci. USA, 109, 12884 (2012); https://doi.org/10.1073/pnas.1210846109
G. Psomas and D.P. Kessissoglou, Dalton Trans., 42, 6252 (2013); https://doi.org/10.1039/c3dt50268f
G. Aridoss, S. Amirthaganesan, N. Ashok Kumar, J.T. Kim, K.T. Lim, S. Kabilan and Y.T. Jeong, Bioorg. Med. Chem. Lett., 18, 6542 (2008); https://doi.org/10.1016/j.bmcl.2008.10.045
C.G. Hartinger, M.A. Jakupec, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P.J. Dyson and B.K. Keppler, Chem. Biodivers.,5, 2140 (2008); https://doi.org/10.1002/cbdv.200890195
S. Chennamaneni, B. Zhong, R. Lama and B. Su, Eur. J. Med. Chem., 56, 17 (2012); https://doi.org/10.1016/j.ejmech.2012.08.005
V. Feyer, O. Plekan, R. Richter, M. Coreno, M. de Simone, K.C. Prince, A.B. Trofimov, I.L. Zaytseva and J. Schirmer, J. Phys. Chem., 114, 10270 (2010); https://doi.org/10.1021/jp105062c
A.K. Chandra, D. Michalska, R. Wysokiñsky and T. Zeegers-Huyskens, J. Phys. Chem. A, 108, 9593 (2004); https://doi.org/10.1021/jp040206c
S. Karabasannavar, P. Allolli, I.N. Shaikh and B.M. Kalshetty, Indian J. Pharm. Educ. Res., 51, 490 (2017); https://doi.org/10.5530/ijper.51.3.77
M. Li, T. Lan, Z. Lin, C. Yi and G.-N. Chen, J. Inorg. Chem., 18, 993 (2013); https://doi.org/10.1007/s00775-013-1048-7
I. Ott, K. Schmidt, B. Kircher, P. Schumacher, T. Wiglenda and R. Gust, J. Med. Chem., 48, 622 (2005); https://doi.org/10.1021/jm049326z
F. Yuan, X. Chen, Y. Zhou, F. Yang, Q. Zhang and J. Liu, J. Coord. Chem., 65, 1246 (2012); https://doi.org/10.1080/00958972.2012.670228