Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Density Functional Theory Reactivity Studies on X3N@C80 (X = Sc, Gd, Lu) Fullerenes
Corresponding Author(s) : P. Selvarengan
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
Density functional theory studies have been performed to reveal the reactivity of the sites in Sc3N@C80, Gd3N@C80 and Lu3N@C80 endohedral fullerenes. The condensed Fukui functions have been calculated using Mulliken atomic charges. The calculations show that the carbon atom sites are in direct contact with the endohedral cluster favourable nucleophilic attack. Similarly, the carbon atoms which are away from the direct bonding with the cluster are favourable for the electrophilic attack. This is also confirmed from the charge transfer analysis. It is noted that the spin multiplicity decides the reactivity sites and stability of the Gd3N@C80 system. The HOMO-LUMO gap value indicates that Gd3N@C80 with S = 7 is stable than the S = 21 system. Finally, present studies indicate that the charge transfer between the C80 cage and X3N plays a major role to determine the reactivity of the sites in the C80 cage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.A. Popov, S. Yang and L. Dunsch, Chem. Rev., 113, 5989 (2013); https://doi.org/10.1021/cr300297r
- S. Wang, Q. Chang, G. Zhang, F. Li, X. Wang, S. Yang and S.I. Troyanov, Front. Chem., 8, 607712 (2020); https://doi.org/10.3389/fchem.2020.607712
- D.S. Bethune, R.D. Johnson, J.R. Salem, M.S. De Vries and C.S. Yannoni, Nature, 366, 123 (1993); https://doi.org/10.1038/366123a0
- C.Y. Shu, C.R. Wang, J.F. Zhang, H.W. Gibson, H.C. Dorn, F.D. Corwin, P.P. Fatouros and T.J.S. Dennis, Chem. Mater., 20, 2106 (2008); https://doi.org/10.1021/cm7023982
- J. Zhang, Y. Ye, Y. Chen, C. Pregot, T. Li, S. Balasubramaniam, D.B. Hobart, Y. Zhang, S. Wi, R.M. Davis, L.A. Madsen, J.R. Morris, S.M. LaConte, G.T. Yee and H.C. Dorn, J. Am. Chem. Soc., 136, 2630 (2014); https://doi.org/10.1021/ja412254k
- M.M. Olmstead, A. de Bettencourt-Dias, J.C. Duchamp, S. Stevenson, D. Marciu, H.C. Dorn and A.L. Balch, Angew. Chem. Int. Ed., 40, 1223 (2001); https://doi.org/10.1002 1521-3773(20010401)40:7<1223::AIDANIE1223>3.0.CO;2-B
- M.M. Olmstead, A. de Bettencourt-Dias, J.C. Duchamp, S. Stevenson, H.C. Dorn and A.L. Balch, J. Am. Chem. Soc., 122, 12220 (2000); https://doi.org/10.1021/ja001984v
- C.M. Beavers, T. Zuo, J.C. Duchamp, K. Harich, H.C. Dorn, M.M. Olmstead and A.L. Balch, J. Am. Chem. Soc., 128, 11352 (2006); https://doi.org/10.1021/ja063636k
- N. Chen, C.M. Beavers, M. Mulet-Gas, A. Rodríguez-Fortea, E.J. Munoz, Y.Y. Li, M.M. Olmstead, A.L. Balch, J.M. Poblet and L. Echegoyen, J. Am. Chem. Soc., 134, 7851 (2012); https://doi.org/10.1021/ja300765z
- S. Caliskan, J. Clust. Sci., 32, 77 (2020); https://doi.org/10.1007/s10876-020-01762-2
- H. Shinohara, Rep. Prog. Phys., 63, 843 (2000); https://doi.org/10.1088/0034-4885/63/6/201
- M. Takata, E. Nishibori, M. Sakata and H. Shinohara, Fullerene-Based Materials, Springer, pp 59-84 (2004).
- L. Dunsch and S. Yang, Small, 3, 1298 (2007); https://doi.org/10.1002/smll.200700036
- L. Dunsch and S. Yang, Phys. Chem. Chem. Phys., 9, 3067 (2007); https://doi.org/10.1039/B704143H
- R.E. Estrada-Salas and A.A. Valladares, J. Mol. Struct. THEOCHEM, 869, 1 (2008); https://doi.org/10.1016/j.theochem.2008.08.017
- R.E. Estrada-Salas and A.A. Valladares, J. Phys. Chem. A, 113, 10299 (2009); https://doi.org/10.1021/jp9029979
- M. Chi, P. Han, X. Fang, W. Jia, X. Liu and B. Xu, J. Mol. Struct. THEOCHEM, 807, 121 (2007); https://doi.org/10.1016/j.theochem.2006.12.020
- A. Pahuja and S. Srivastava, Int. J. Mod. Phys. B, 27, 1350152 (2013); https://doi.org/10.1142/S021797921350152X
- W. Fu, J. Zhang, H. Champion, T. Fuhrer, H. Azuremendi, T. Zuo, J. Zhang, K. Harich and H.C. Dorn, Inorg. Chem., 50, 4256 (2011); https://doi.org/10.1021/ic101772d
- S. Guha and K. Nakamoto, Coord. Chem. Rev., 249, 1111 (2005); https://doi.org/10.1016/j.ccr.2004.11.017
- S. Iida, Y. Kubozono, Y. Slovokhotov, Y. Takabayashi, T. Kanbara, T. Fukunaga, S. Fujiki, S. Emura and S. Kashino, Chem. Phys. Lett., 338, 21 (2001); https://doi.org/10.1016/S0009-2614(01)00234-2
- S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M.R. Jordan, J. Craft, E. Hadju, R. Bible, M.M. Olmstead, K. Maitra, A.J. Fisher, A.L. Balch and H.C. Dorn, Nature, 401, 55 (1999); https://doi.org/10.1038/43415
- I.E. Kareev, V.P. Bubnov, E.K. Alidzhanov, S.N. Pashkevich, Y.D. Lantukh, S.N. Letuta and D.A. Razdobreev, Phys. Solid State, 62, 206 (2020); https://doi.org/10.1134/S1063783420010163
- S. Osuna, R. Valencia, A. Rodríguez Fortea, M. Swart, M. Solà and J.M. Poblet, Chem. Eur. J., 18, 8944 (2012); https://doi.org/10.1002/chem.201200940.
- J. Lu, R.F. Sabirianov, W.N. Mei, Y. Gao, C.G. Duan and X.C. Zeng, J.Phys. Chem. B, 110, 23637 (2006); https://doi.org/10.1021/jp0662395
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, J.J. Heyd, M. Bearpark, J.E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Ross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J.Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01; Gaussian Wallingford, CT (2009).
- P. Fuentealba, P. Pérez and R. Contreras, J. Chem. Phys., 113, 2544 (2000); https://doi.org/10.1063/1.1305879
- P. Bultinck, S. Fias, C. Van Alsenoy, P.W. Ayers and R. Carbó-Dorca, J. Chem. Phys., 127, 34102 (2007); https://doi.org/10.1063/1.2749518
- M. Yoon, S. Yang and Z. Zhang, J. Chem. Phys., 131, 64707 (2009); https://doi.org/10.1063/1.3197006
- Y. Zhu, Y. Li and Z.Q. Yang, Chem. Phys. Lett., 461, 285 (2008); https://doi.org/10.1016/j.cplett.2008.07.045
- W. Yang, R.G. Parr and R. Pucci, J. Chem. Phys., 81, 2862 (1984); https://doi.org/10.1063/1.447964
- W. Yang and W.J. Mortier, J. Am. Chem. Soc., 108, 5708 (1986); https://doi.org/10.1021/ja00279a008
- P. Kolandaivel, P. Selvarengan and K.V. Gunavathy, Biochim. Biophys. Acta. Proteins Proteomics, 1764, 138 (2006); https://doi.org/10.1016/j.bbapap.2005.10.016
- S. Yang, S.I. Troyanov, A.A. Popov, M. Krause and L. Dunsch, J. Am. Chem. Soc., 128, 16733 (2006); https://doi.org/10.1021/ja066814i
References
A.A. Popov, S. Yang and L. Dunsch, Chem. Rev., 113, 5989 (2013); https://doi.org/10.1021/cr300297r
S. Wang, Q. Chang, G. Zhang, F. Li, X. Wang, S. Yang and S.I. Troyanov, Front. Chem., 8, 607712 (2020); https://doi.org/10.3389/fchem.2020.607712
D.S. Bethune, R.D. Johnson, J.R. Salem, M.S. De Vries and C.S. Yannoni, Nature, 366, 123 (1993); https://doi.org/10.1038/366123a0
C.Y. Shu, C.R. Wang, J.F. Zhang, H.W. Gibson, H.C. Dorn, F.D. Corwin, P.P. Fatouros and T.J.S. Dennis, Chem. Mater., 20, 2106 (2008); https://doi.org/10.1021/cm7023982
J. Zhang, Y. Ye, Y. Chen, C. Pregot, T. Li, S. Balasubramaniam, D.B. Hobart, Y. Zhang, S. Wi, R.M. Davis, L.A. Madsen, J.R. Morris, S.M. LaConte, G.T. Yee and H.C. Dorn, J. Am. Chem. Soc., 136, 2630 (2014); https://doi.org/10.1021/ja412254k
M.M. Olmstead, A. de Bettencourt-Dias, J.C. Duchamp, S. Stevenson, D. Marciu, H.C. Dorn and A.L. Balch, Angew. Chem. Int. Ed., 40, 1223 (2001); https://doi.org/10.1002 1521-3773(20010401)40:7<1223::AIDANIE1223>3.0.CO;2-B
M.M. Olmstead, A. de Bettencourt-Dias, J.C. Duchamp, S. Stevenson, H.C. Dorn and A.L. Balch, J. Am. Chem. Soc., 122, 12220 (2000); https://doi.org/10.1021/ja001984v
C.M. Beavers, T. Zuo, J.C. Duchamp, K. Harich, H.C. Dorn, M.M. Olmstead and A.L. Balch, J. Am. Chem. Soc., 128, 11352 (2006); https://doi.org/10.1021/ja063636k
N. Chen, C.M. Beavers, M. Mulet-Gas, A. Rodríguez-Fortea, E.J. Munoz, Y.Y. Li, M.M. Olmstead, A.L. Balch, J.M. Poblet and L. Echegoyen, J. Am. Chem. Soc., 134, 7851 (2012); https://doi.org/10.1021/ja300765z
S. Caliskan, J. Clust. Sci., 32, 77 (2020); https://doi.org/10.1007/s10876-020-01762-2
H. Shinohara, Rep. Prog. Phys., 63, 843 (2000); https://doi.org/10.1088/0034-4885/63/6/201
M. Takata, E. Nishibori, M. Sakata and H. Shinohara, Fullerene-Based Materials, Springer, pp 59-84 (2004).
L. Dunsch and S. Yang, Small, 3, 1298 (2007); https://doi.org/10.1002/smll.200700036
L. Dunsch and S. Yang, Phys. Chem. Chem. Phys., 9, 3067 (2007); https://doi.org/10.1039/B704143H
R.E. Estrada-Salas and A.A. Valladares, J. Mol. Struct. THEOCHEM, 869, 1 (2008); https://doi.org/10.1016/j.theochem.2008.08.017
R.E. Estrada-Salas and A.A. Valladares, J. Phys. Chem. A, 113, 10299 (2009); https://doi.org/10.1021/jp9029979
M. Chi, P. Han, X. Fang, W. Jia, X. Liu and B. Xu, J. Mol. Struct. THEOCHEM, 807, 121 (2007); https://doi.org/10.1016/j.theochem.2006.12.020
A. Pahuja and S. Srivastava, Int. J. Mod. Phys. B, 27, 1350152 (2013); https://doi.org/10.1142/S021797921350152X
W. Fu, J. Zhang, H. Champion, T. Fuhrer, H. Azuremendi, T. Zuo, J. Zhang, K. Harich and H.C. Dorn, Inorg. Chem., 50, 4256 (2011); https://doi.org/10.1021/ic101772d
S. Guha and K. Nakamoto, Coord. Chem. Rev., 249, 1111 (2005); https://doi.org/10.1016/j.ccr.2004.11.017
S. Iida, Y. Kubozono, Y. Slovokhotov, Y. Takabayashi, T. Kanbara, T. Fukunaga, S. Fujiki, S. Emura and S. Kashino, Chem. Phys. Lett., 338, 21 (2001); https://doi.org/10.1016/S0009-2614(01)00234-2
S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M.R. Jordan, J. Craft, E. Hadju, R. Bible, M.M. Olmstead, K. Maitra, A.J. Fisher, A.L. Balch and H.C. Dorn, Nature, 401, 55 (1999); https://doi.org/10.1038/43415
I.E. Kareev, V.P. Bubnov, E.K. Alidzhanov, S.N. Pashkevich, Y.D. Lantukh, S.N. Letuta and D.A. Razdobreev, Phys. Solid State, 62, 206 (2020); https://doi.org/10.1134/S1063783420010163
S. Osuna, R. Valencia, A. Rodríguez Fortea, M. Swart, M. Solà and J.M. Poblet, Chem. Eur. J., 18, 8944 (2012); https://doi.org/10.1002/chem.201200940.
J. Lu, R.F. Sabirianov, W.N. Mei, Y. Gao, C.G. Duan and X.C. Zeng, J.Phys. Chem. B, 110, 23637 (2006); https://doi.org/10.1021/jp0662395
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, J.J. Heyd, M. Bearpark, J.E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Ross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J.Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01; Gaussian Wallingford, CT (2009).
P. Fuentealba, P. Pérez and R. Contreras, J. Chem. Phys., 113, 2544 (2000); https://doi.org/10.1063/1.1305879
P. Bultinck, S. Fias, C. Van Alsenoy, P.W. Ayers and R. Carbó-Dorca, J. Chem. Phys., 127, 34102 (2007); https://doi.org/10.1063/1.2749518
M. Yoon, S. Yang and Z. Zhang, J. Chem. Phys., 131, 64707 (2009); https://doi.org/10.1063/1.3197006
Y. Zhu, Y. Li and Z.Q. Yang, Chem. Phys. Lett., 461, 285 (2008); https://doi.org/10.1016/j.cplett.2008.07.045
W. Yang, R.G. Parr and R. Pucci, J. Chem. Phys., 81, 2862 (1984); https://doi.org/10.1063/1.447964
W. Yang and W.J. Mortier, J. Am. Chem. Soc., 108, 5708 (1986); https://doi.org/10.1021/ja00279a008
P. Kolandaivel, P. Selvarengan and K.V. Gunavathy, Biochim. Biophys. Acta. Proteins Proteomics, 1764, 138 (2006); https://doi.org/10.1016/j.bbapap.2005.10.016
S. Yang, S.I. Troyanov, A.A. Popov, M. Krause and L. Dunsch, J. Am. Chem. Soc., 128, 16733 (2006); https://doi.org/10.1021/ja066814i