Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
DNA Inhibition of Hydrogen Ion-Induced Corrosion of Mild Steel Used for Pipelines in Oil and Gas Industries
Corresponding Author(s) : Oluranti Agboola
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
Corrosion of mild steel via chemical reaction in a corrosive environment is a problematic occurrence that is very common in oil and gas industries. Corrosion constitutes a huge part of the total costs in the production of oil and gas. Corrosion inhibitors have found interest in the scientific domain because they are mainly understood by their chemical complexes and formulations. Their utilization in small amount on metal surface used in oil and gas industries can help shield the metal from corrosion devoid of any significant alteration in the concentration of the corrosive media in the environment. An effort was made to study the possibility of using calf thymus gland DNA (CTGDNA) inhibitor in chlorine induced mild steel for possible usage in piping in oil and gas industry. The SEM micrograph shows that the adsorption of the CTGDNA biomacromolecules coat on the mild steel surfaces functions as a protection against HCl corrosive solution. Electrochemical study and weight loss analysis showed that the inhibitor efficiency (70.48 and 72%, respectively) of the tested DNA (CTGDNA) in HCl acidic corrosion environment for the mild steel was high at 1.5 M of HCl. The inhibitor efficiency decreased with increasing HCl concentrations. The open circuit potential (OPC) revealed that the mild steels got corroded until the end of the immersion. The intensities of XRD peak substantiate the existence of corrosion products of FeCl2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O.K. Ukoba, P.K. Oke and M.C. Ibegbulam, Int. J. Sci. Technol., 2,618 (2012).
- M. Finšgar and J. Jackson, Corros. Sci., 86, 17 (2014); https://doi.org/10.1016/j.corsci.2014.04.044
- W.F. Smith and J. Hashemi, Foundations of Material Science and Engineering, McGraw-Hill: New York (2006).
- P.R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill: New York (2000).
- M.B. Kermani and L.M. Smith, CO2 Corrosion Control in Oil and Gas Production: Design Considerations; The Institute of Materials, European Federation of Corrosion Publications: London (1997).
- Champion Technologies, Corrosion Mitigation for Complex Environments. Champion Technologies, Houston, USA (2012).
- M. Mansouri, H. Atashi, A. Mirzaei and R. Jangi, Int. J. Indus. Chem.,4, 1 (2013); https://doi.org/10.1186/2228-5547-4-1
- J. Garcia-Antün, J. Monzü, L. GuiEiün, D. Gümez and J. Costa, Fresenius J. Anal. Chem., 337, 382 (1990); https://doi.org/10.1007/BF00322216
- D. Lusk, M. Gupta, K. Boinapally and Y. Cao, Hydrocarbon Eng., 13, 115 (2008).
- P. Rajeev, A.O. Surendranathan and Ch.S.N. Murthy, Environ. Sci., 3, 856 (2012).
- Y.I. Kuznetsov, A.A. Chirkunov and A.M. Semiletov, Int. J. Corros. Scale Inhib., 8, 850 (2019); https://doi.org/10.17675/2305-6894-2019-8-4-5
- M. Finsgar and J. Jackson, Corros. Sci., 86, 17 (2014); https://doi.org/10.1016/j.corsci.2014.04.044
- N. Muthukumar, Petroleum Products Transporting Pipeline Corrosion: A Review, In: The Role of Colloidal systems in Environmental Protection, Elsevier: UK, Chap. 21 (2014).
- L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti and A.S. Balogun,Int. J. Indus. Chem., 4, 35 (2013); https://doi.org/10.1186/2228-5547-4-35
- E. Barmatov, J. Geddes, T. Hughes and M. Nagl, Research on corrosion inhibitors acid stimulation, in: NACE, pp C2012–0001573 (2012).
- M.A. Ibraheem, A.E.E. Fouda, M.T. Rashad and F.N. Sabbahy, Int. Scholarly Res. Network, 2012, 892385 (2012); https://doi.org/10.5402/2012/892385
- K. Hu, J. Zhuang, J. Ding, Z. Ma, F. Wang and X. Zeng, Corros. Sci., 125, 68 (2017); https://doi.org/10.1016/j.corsci.2017.06.004
- O. Agboola, F. Achile, S.O. Fayomi, S.E. Sanni, O. Abatan, E.R. Sadiku, P. Popoola, M.P. Mubiayi, E.T. Akinlabi, M.E. Makhatha, T. Adedoyinand I. Ekere, J. Bio- and Tribo-Corros., 5, 52 (2019); https://doi.org/10.1007/s40735-019-0245-5
- O. Agboola, T. Adedoyin, S.E. Sanni, E.A. Omonidgbehin, S.O. Fayomi, B.E. Adegboye, A. Ayoola, O. Omodara, A.O. Ayeni, P. Popoola, R. Sadiku and P.A. Alaba, Anal. Bioanal. Electrochem., 11, 1304 (2019).
- O. Agboola, S.E. Sanni, S.O. Fayomi, P. Popoola, R. Sadiku, A. Adegbola and V.O. Fasiku, J. Bio. Tribo. Corros., 6, 7 (2020); https://doi.org/10.1007/s40735-019-0308-7
- R.D. Desiati, E. Sugiarti and K.A.Z. Thosin, Effect of Cloric Acid Concentration on Corrosion Behavior of Ni/Cr Coated on Carbon Steel.Proceedings of the International Seminar on Metallurgy and Materials (ISMM2017), no. 1964, pp 1-6 (2017).
- T.M. Martin, D.B. Robinson and R.J. Narayan, Nanoporous Gold for Biomedical Applications: Structure, properties, and Applications, In: Precious Metals for Biomedical Applications, Cambridge: Woodhead Publishing Ltd., Chap. 7, pp. 148-162 (2014).
- H. Hamani, T. Douadi, D. Daoud, M. Al-Noaimi, R.A. Rikkouh and S. Chafaa, J. Electroanal. Chem., 801, 425 (2017); https://doi.org/10.1016/j.jelechem.2017.08.031
- M.G. Fontana and N.D. Green, Corrosion Engineering, McGraw-Hill Publication, USA, ed. 2 (1978).
- S. Paul, A. Pattanayak and S.K. Guchhait, Int. J. Metals, 2014, Article ID 628505 (2014); https://doi.org/10.1155/2014/628505
- A. Ruiz Puigdollers, P. Schlexer, S. Tosoni and G. Pacchioni, ACS Catal., 7, 6493 (2017); https://doi.org/10.1021/acscatal.7b01913
- D. Dwivedi, K. Lepkova and T. Becker, RSC Advances, 7, 4580 (2017); https://doi.org/10.1039/C6RA25094G
- N.M. Martyak and P. McAndrew, Corros. Sci., 49, 3826 (2007); https://doi.org/10.1016/j.corsci.2007.05.013
- O.S. Shehata, L.A. Khorshed and H.S. Mandour, Egypt. J. Chem., 60, 243 (2017); https://doi.org/10.21608/EJCHEM.2017.674.1014
References
O.K. Ukoba, P.K. Oke and M.C. Ibegbulam, Int. J. Sci. Technol., 2,618 (2012).
M. Finšgar and J. Jackson, Corros. Sci., 86, 17 (2014); https://doi.org/10.1016/j.corsci.2014.04.044
W.F. Smith and J. Hashemi, Foundations of Material Science and Engineering, McGraw-Hill: New York (2006).
P.R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill: New York (2000).
M.B. Kermani and L.M. Smith, CO2 Corrosion Control in Oil and Gas Production: Design Considerations; The Institute of Materials, European Federation of Corrosion Publications: London (1997).
Champion Technologies, Corrosion Mitigation for Complex Environments. Champion Technologies, Houston, USA (2012).
M. Mansouri, H. Atashi, A. Mirzaei and R. Jangi, Int. J. Indus. Chem.,4, 1 (2013); https://doi.org/10.1186/2228-5547-4-1
J. Garcia-Antün, J. Monzü, L. GuiEiün, D. Gümez and J. Costa, Fresenius J. Anal. Chem., 337, 382 (1990); https://doi.org/10.1007/BF00322216
D. Lusk, M. Gupta, K. Boinapally and Y. Cao, Hydrocarbon Eng., 13, 115 (2008).
P. Rajeev, A.O. Surendranathan and Ch.S.N. Murthy, Environ. Sci., 3, 856 (2012).
Y.I. Kuznetsov, A.A. Chirkunov and A.M. Semiletov, Int. J. Corros. Scale Inhib., 8, 850 (2019); https://doi.org/10.17675/2305-6894-2019-8-4-5
M. Finsgar and J. Jackson, Corros. Sci., 86, 17 (2014); https://doi.org/10.1016/j.corsci.2014.04.044
N. Muthukumar, Petroleum Products Transporting Pipeline Corrosion: A Review, In: The Role of Colloidal systems in Environmental Protection, Elsevier: UK, Chap. 21 (2014).
L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti and A.S. Balogun,Int. J. Indus. Chem., 4, 35 (2013); https://doi.org/10.1186/2228-5547-4-35
E. Barmatov, J. Geddes, T. Hughes and M. Nagl, Research on corrosion inhibitors acid stimulation, in: NACE, pp C2012–0001573 (2012).
M.A. Ibraheem, A.E.E. Fouda, M.T. Rashad and F.N. Sabbahy, Int. Scholarly Res. Network, 2012, 892385 (2012); https://doi.org/10.5402/2012/892385
K. Hu, J. Zhuang, J. Ding, Z. Ma, F. Wang and X. Zeng, Corros. Sci., 125, 68 (2017); https://doi.org/10.1016/j.corsci.2017.06.004
O. Agboola, F. Achile, S.O. Fayomi, S.E. Sanni, O. Abatan, E.R. Sadiku, P. Popoola, M.P. Mubiayi, E.T. Akinlabi, M.E. Makhatha, T. Adedoyinand I. Ekere, J. Bio- and Tribo-Corros., 5, 52 (2019); https://doi.org/10.1007/s40735-019-0245-5
O. Agboola, T. Adedoyin, S.E. Sanni, E.A. Omonidgbehin, S.O. Fayomi, B.E. Adegboye, A. Ayoola, O. Omodara, A.O. Ayeni, P. Popoola, R. Sadiku and P.A. Alaba, Anal. Bioanal. Electrochem., 11, 1304 (2019).
O. Agboola, S.E. Sanni, S.O. Fayomi, P. Popoola, R. Sadiku, A. Adegbola and V.O. Fasiku, J. Bio. Tribo. Corros., 6, 7 (2020); https://doi.org/10.1007/s40735-019-0308-7
R.D. Desiati, E. Sugiarti and K.A.Z. Thosin, Effect of Cloric Acid Concentration on Corrosion Behavior of Ni/Cr Coated on Carbon Steel.Proceedings of the International Seminar on Metallurgy and Materials (ISMM2017), no. 1964, pp 1-6 (2017).
T.M. Martin, D.B. Robinson and R.J. Narayan, Nanoporous Gold for Biomedical Applications: Structure, properties, and Applications, In: Precious Metals for Biomedical Applications, Cambridge: Woodhead Publishing Ltd., Chap. 7, pp. 148-162 (2014).
H. Hamani, T. Douadi, D. Daoud, M. Al-Noaimi, R.A. Rikkouh and S. Chafaa, J. Electroanal. Chem., 801, 425 (2017); https://doi.org/10.1016/j.jelechem.2017.08.031
M.G. Fontana and N.D. Green, Corrosion Engineering, McGraw-Hill Publication, USA, ed. 2 (1978).
S. Paul, A. Pattanayak and S.K. Guchhait, Int. J. Metals, 2014, Article ID 628505 (2014); https://doi.org/10.1155/2014/628505
A. Ruiz Puigdollers, P. Schlexer, S. Tosoni and G. Pacchioni, ACS Catal., 7, 6493 (2017); https://doi.org/10.1021/acscatal.7b01913
D. Dwivedi, K. Lepkova and T. Becker, RSC Advances, 7, 4580 (2017); https://doi.org/10.1039/C6RA25094G
N.M. Martyak and P. McAndrew, Corros. Sci., 49, 3826 (2007); https://doi.org/10.1016/j.corsci.2007.05.013
O.S. Shehata, L.A. Khorshed and H.S. Mandour, Egypt. J. Chem., 60, 243 (2017); https://doi.org/10.21608/EJCHEM.2017.674.1014