Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microencapsulation of Gadolinium Citrate using Silica for Contrast Agent Development
Corresponding Author(s) : D.R. Eddy
Asian Journal of Chemistry,
Vol. 33 No. 3 (2021): Vol 33 Issue 3
Abstract
Gadolinium is a potential T1 contrast agent because it provides a better image for magnetic resonance imaging (MRI). However, as toxic gadolinium ions can be released from the coordination compounds, it is often encapsulated using silica. Silica-encapsulated gadolinium citrate is a colloid, therefore, encapsulation efficiency should be determined by the standard addition method, not the external standard, to minimize errors in the matrix. Silica-encapsulated gadolinium citrate (Gd-C6H5O7@SiO2) was prepared via the Stöber sol-gel method by mixing gadolinium citrate, ethanol, aqua proinjection, tetraethylorthosilicate (TEOS) and ammonia, then the encapsulation efficiency was determined using the standard addition method. Particle size analysis revealed that the average size of Gd-C6H5O7@SiO2 particles was 1.53 μm having a encapsulation efficiency of 90.44%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.L. Chaffer and R.A. Weinberg, Science, 331, 1559 (2011); https://doi.org/10.1126/science.1203543
- S. Li, J. Jiang, J. Zou, J. Qiao, S. Xue, L. Wei, R. Long, L. Wang, A. Castiblanco, N. White, J. Ngo, H. Mao, Z.R. Liu and J.J. Yang, J. Inorg. Biochem., 107, 111 (2012); https://doi.org/10.1016/j.jinorgbio.2011.11.004
- M. Pálmai, A. Pethõ, L.N. Nagy, S. Klébert, Z. May, J. Mihály, A. Wacha, K. Jemnitz, Z. Veres, I. Horváth, K. Szigeti, D. Máthé and Z. Varga, J. Colloid Interface Sci., 498, 298 (2017); https://doi.org/10.1016/j.jcis.2017.03.053
- H. Ersoy and F.J. Rybicki, J. Magn. Reson. Imaging, 26, 1190 (2007); https://doi.org/10.1002/jmri.21135
- L.M. Randolph, C.L.M. LeGuyader, M.E. Hahn, C.M. Andolina, J.P. Patterson, R.F. Mattrey, J.E. Millstone, M. Botta, M. Scadeng and N.C.Gianneschi, Chem. Sci., 7, 4230 (2016); https://doi.org/10.1039/C6SC00342G
- W.I. Lin, C.Y. Lin, Y.S. Lin, S.H. Wu, Y.R. Huang, Y. Hung, C. Chang and C.Y. Mou, J. Mater. Chem. B Mater. Biol. Med., 1, 639 (2013); https://doi.org/10.1039/C2TB00283C
- D.R. Eddy, A. Anggraeni, R.P. Fauzia, I. Rahayu, A. Mutalib, M.L. Firdaus and H.H. Bahti, Orient. J. Chem., 34, 2603 (2018); https://doi.org/10.13005/ojc/340550
- N. Babayevska, P. Florczak, M. Wozniak-Budych, G. Nowaczyk, M. Jarek, T. Zalewski and S. Jurga, Appl. Surf. Sci., 404, 129 (2017); https://doi.org/10.1016/j.apsusc.2017.01.274
- D.A. Skoog, D.M. West and F.J. Holler, Analytical Chemistry: An Introduction, Saunders College Publishing, Philadelphia, edn 5 (1990).
- U. Chandra, Recent Applications in Sol-Gel Synthesis, IntechOpen, (2017).
- X.D. Wang, Z.X. Shen, T. Sang, X.B. Cheng, M.F. Li, L.Y. Chen and Z.S. Wang, J. Colloid Interface Sci., 341, 23 (2010); https://doi.org/10.1016/j.jcis.2009.09.018
- D.R. Eddy, A. Anggraeni, A. Hardianto, I. Rahayu and H.H. Bahti, Chem. Res. J., 5, 1 (2020).
- R. Baggio, R. Calvo, M.T. Garland, O. Peña, M. Perec and A. Rizzi, Inorg. Chem., 44, 8979 (2005); https://doi.org/10.1021/ic0510056
- S.K. Morcos, Eur. J. Radiol., 66, 175 (2008); https://doi.org/10.1016/j.ejrad.2008.01.025
- A.E. Danks, S.R. Hall and Z. Schnepp, Mater. Horiz., 3, 91 (2016); https://doi.org/10.1039/C5MH00260E
- Y.S. Lin, Y. Hung, J.K. Su, R. Lee, C. Chang, M.L. Lin and C.-Y. Mou, J. Phys. Chem. B, 108, 15608 (2004); https://doi.org/10.1021/jp047829a
- S. Wilhelm and M. Kind, Polymers, 7, 2504 (2015); https://doi.org/10.3390/polym7121528
References
C.L. Chaffer and R.A. Weinberg, Science, 331, 1559 (2011); https://doi.org/10.1126/science.1203543
S. Li, J. Jiang, J. Zou, J. Qiao, S. Xue, L. Wei, R. Long, L. Wang, A. Castiblanco, N. White, J. Ngo, H. Mao, Z.R. Liu and J.J. Yang, J. Inorg. Biochem., 107, 111 (2012); https://doi.org/10.1016/j.jinorgbio.2011.11.004
M. Pálmai, A. Pethõ, L.N. Nagy, S. Klébert, Z. May, J. Mihály, A. Wacha, K. Jemnitz, Z. Veres, I. Horváth, K. Szigeti, D. Máthé and Z. Varga, J. Colloid Interface Sci., 498, 298 (2017); https://doi.org/10.1016/j.jcis.2017.03.053
H. Ersoy and F.J. Rybicki, J. Magn. Reson. Imaging, 26, 1190 (2007); https://doi.org/10.1002/jmri.21135
L.M. Randolph, C.L.M. LeGuyader, M.E. Hahn, C.M. Andolina, J.P. Patterson, R.F. Mattrey, J.E. Millstone, M. Botta, M. Scadeng and N.C.Gianneschi, Chem. Sci., 7, 4230 (2016); https://doi.org/10.1039/C6SC00342G
W.I. Lin, C.Y. Lin, Y.S. Lin, S.H. Wu, Y.R. Huang, Y. Hung, C. Chang and C.Y. Mou, J. Mater. Chem. B Mater. Biol. Med., 1, 639 (2013); https://doi.org/10.1039/C2TB00283C
D.R. Eddy, A. Anggraeni, R.P. Fauzia, I. Rahayu, A. Mutalib, M.L. Firdaus and H.H. Bahti, Orient. J. Chem., 34, 2603 (2018); https://doi.org/10.13005/ojc/340550
N. Babayevska, P. Florczak, M. Wozniak-Budych, G. Nowaczyk, M. Jarek, T. Zalewski and S. Jurga, Appl. Surf. Sci., 404, 129 (2017); https://doi.org/10.1016/j.apsusc.2017.01.274
D.A. Skoog, D.M. West and F.J. Holler, Analytical Chemistry: An Introduction, Saunders College Publishing, Philadelphia, edn 5 (1990).
U. Chandra, Recent Applications in Sol-Gel Synthesis, IntechOpen, (2017).
X.D. Wang, Z.X. Shen, T. Sang, X.B. Cheng, M.F. Li, L.Y. Chen and Z.S. Wang, J. Colloid Interface Sci., 341, 23 (2010); https://doi.org/10.1016/j.jcis.2009.09.018
D.R. Eddy, A. Anggraeni, A. Hardianto, I. Rahayu and H.H. Bahti, Chem. Res. J., 5, 1 (2020).
R. Baggio, R. Calvo, M.T. Garland, O. Peña, M. Perec and A. Rizzi, Inorg. Chem., 44, 8979 (2005); https://doi.org/10.1021/ic0510056
S.K. Morcos, Eur. J. Radiol., 66, 175 (2008); https://doi.org/10.1016/j.ejrad.2008.01.025
A.E. Danks, S.R. Hall and Z. Schnepp, Mater. Horiz., 3, 91 (2016); https://doi.org/10.1039/C5MH00260E
Y.S. Lin, Y. Hung, J.K. Su, R. Lee, C. Chang, M.L. Lin and C.-Y. Mou, J. Phys. Chem. B, 108, 15608 (2004); https://doi.org/10.1021/jp047829a
S. Wilhelm and M. Kind, Polymers, 7, 2504 (2015); https://doi.org/10.3390/polym7121528