Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Synthesis of Dibenzo-[b,f][1,5]diazocine Derivatives for Photocatalytic Water Splitting Applications
Corresponding Author(s) : Y.H. Hwang
Asian Journal of Chemistry,
Vol. 33 No. 3 (2021): Vol 33 Issue 3
Abstract
Photocatalytic water splitting converts solar energy to storable hydrogen molecules which has the highest energy per mass. Most catalysts for photocatalytic water splitting utilize noble metals or precious metals. Organic photocatalysts are attracting more attention owing to several advantages like light weight, low cost, defined structure and tunability. In this study, the synthesis of several dibenzo[b,f][1,5]-diazocines via microwave irradiation for water splitting application is reported. Microwave irradiation facilitates fast, safe and simple synthesis in green reaction conditions. Mini library of dibenzo[b,f][1,5]diazocines were created in order to understand substituents effect on the photocatalytic activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A.Santori and N.S. Lewis, Chem. Rev., 110, 6446 (2010); https://doi.org/10.1021/cr1002326
- A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2009); https://doi.org/10.1039/B800489G
- C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang and J. Tang, Chem. Soc. Rev., 46, 4645 (2017); https://doi.org/10.1039/C6CS00306K
- H.W. Seo and J.S. Kim, Appl. Sci. Converg. Technol., 27, 61 (2018); https://doi.org/10.5757/ASCT.2018.27.4.61
- G. Zhang, Z.A. Lan and X. Wang, Angew. Chem. Int. Ed., 55, 15712 (2016); https://doi.org/10.1002/anie.201607375
- L. Yao, A. Rahmanudin, N. Guijarro and K. Sivula, Adv. Energy Mater., 8, 1802585 (2018); https://doi.org/10.1002/aenm.201802585
- A. Aleksovska, P. Lonnecke, M.A. Addicoat, R. Glaser and E. HeyHawkins, ChemistryOpen, 9, 405 (2020); https://doi.org/10.1002/open.202000036
- W. Cieslik, M. Serda, A. Kurczyk and R. Musiol, Curr. Org. Chem., 17, 491 (2013); https://doi.org/10.2174/1385272811317050006
- S.K. Cho, J.H. Song, E.J. Lee, D.H. Lee, J.T. Hahn and D.I. Jung, Bull.Korean Chem. Soc., 36, 2746 (2015); https://doi.org/10.1002/bkcs.10557
- D.I. Jung, J.H. Song, E.J. Lee, Y.Y. Kim, D.H. Lee, Y.G. Lee and J.T.Hahn, Tetrahedron Lett., 50, 5805 (2009); https://doi.org/10.1016/j.tetlet.2009.07.150
- G. Sabitha, R.S. Babu, B.V. Subba Reddy and J.S. Yadav, Synth.Commun., 29, 4403 (1999); https://doi.org/10.1080/00397919908086603
- L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001); https://doi.org/10.1016/S0040-4020(01)00905-X
- X. Wang, J. Li, N. Zhao and X. Wan, Org. Lett., 13, 709 (2011); https://doi.org/10.1021/ol102957c
- Y. Jiang, X. Wang, Z. An and X. Wan, Tetrahedron Lett., 55, 3545 (2014); https://doi.org/10.1016/j.tetlet.2014.04.094
- Y.N. Liu, J.Z. Li and X.B. Wan, Chin. J. Polym. Sci., 36, 736 (2018); https://doi.org/10.1007/s10118-018-2062-6
- Y. Chen, J. Wang, H. Liu, R. Li, X. Sun, S. Ye and S. Knights, Electrochem. Commun., 11, 2071 (2009); https://doi.org/10.1016/j.elecom.2009.09.008
- F. Su, Z. Tian, C.K. Poh, Z. Wang, S.H. Lim, Z. Liu and J. Lin, Chem.Mater., 22, 832 (2010); https://doi.org/10.1021/cm901542w
- S. Esiner, R.E.M. Willems, A. Furlan, W. Li, M.M. Wienk and R.A.J.Janssen, J. Mater. Chem. A Mater. Energy Sustain., 3, 23936 (2015); https://doi.org/10.1039/C5TA07325A
References
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A.Santori and N.S. Lewis, Chem. Rev., 110, 6446 (2010); https://doi.org/10.1021/cr1002326
A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2009); https://doi.org/10.1039/B800489G
C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang and J. Tang, Chem. Soc. Rev., 46, 4645 (2017); https://doi.org/10.1039/C6CS00306K
H.W. Seo and J.S. Kim, Appl. Sci. Converg. Technol., 27, 61 (2018); https://doi.org/10.5757/ASCT.2018.27.4.61
G. Zhang, Z.A. Lan and X. Wang, Angew. Chem. Int. Ed., 55, 15712 (2016); https://doi.org/10.1002/anie.201607375
L. Yao, A. Rahmanudin, N. Guijarro and K. Sivula, Adv. Energy Mater., 8, 1802585 (2018); https://doi.org/10.1002/aenm.201802585
A. Aleksovska, P. Lonnecke, M.A. Addicoat, R. Glaser and E. HeyHawkins, ChemistryOpen, 9, 405 (2020); https://doi.org/10.1002/open.202000036
W. Cieslik, M. Serda, A. Kurczyk and R. Musiol, Curr. Org. Chem., 17, 491 (2013); https://doi.org/10.2174/1385272811317050006
S.K. Cho, J.H. Song, E.J. Lee, D.H. Lee, J.T. Hahn and D.I. Jung, Bull.Korean Chem. Soc., 36, 2746 (2015); https://doi.org/10.1002/bkcs.10557
D.I. Jung, J.H. Song, E.J. Lee, Y.Y. Kim, D.H. Lee, Y.G. Lee and J.T.Hahn, Tetrahedron Lett., 50, 5805 (2009); https://doi.org/10.1016/j.tetlet.2009.07.150
G. Sabitha, R.S. Babu, B.V. Subba Reddy and J.S. Yadav, Synth.Commun., 29, 4403 (1999); https://doi.org/10.1080/00397919908086603
L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001); https://doi.org/10.1016/S0040-4020(01)00905-X
X. Wang, J. Li, N. Zhao and X. Wan, Org. Lett., 13, 709 (2011); https://doi.org/10.1021/ol102957c
Y. Jiang, X. Wang, Z. An and X. Wan, Tetrahedron Lett., 55, 3545 (2014); https://doi.org/10.1016/j.tetlet.2014.04.094
Y.N. Liu, J.Z. Li and X.B. Wan, Chin. J. Polym. Sci., 36, 736 (2018); https://doi.org/10.1007/s10118-018-2062-6
Y. Chen, J. Wang, H. Liu, R. Li, X. Sun, S. Ye and S. Knights, Electrochem. Commun., 11, 2071 (2009); https://doi.org/10.1016/j.elecom.2009.09.008
F. Su, Z. Tian, C.K. Poh, Z. Wang, S.H. Lim, Z. Liu and J. Lin, Chem.Mater., 22, 832 (2010); https://doi.org/10.1021/cm901542w
S. Esiner, R.E.M. Willems, A. Furlan, W. Li, M.M. Wienk and R.A.J.Janssen, J. Mater. Chem. A Mater. Energy Sustain., 3, 23936 (2015); https://doi.org/10.1039/C5TA07325A