Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Structural Characterization of Lanthanum(III) Complexes of 4-Nitrosoantipyrine
Corresponding Author(s) : Sreesha Sasi
Asian Journal of Chemistry,
Vol. 33 No. 3 (2021): Vol 33 Issue 3
Abstract
A new series of La(III) complexes of the ligand with the general formula [La(L)2(a)3] and [La2(L)4(aa)3], (a = nitrate (1), thiocyanate (2), acetate (3) and propionate (4) ions, aa = sulphate (5), thiosulphate (6), oxalate (7) and malonate (8) ions with the ligand 4-nitrosoantipyrine (L) were synthesized and characterized using various physico-chemical studies. The primary ligand L acts as a bidentate ligand utilizing the carbonyl group and the nitroso group for bonding. The nitrate, thiocyanate, acetate and propionate ions are monovalent unidentate ligands, whereas sulphate, thiosulphate, oxalate and malonate ions are divalent bidentate ligands in the complexes 1-8. Based on spectral data and magnetic susceptibility measurements, geometry of the lanthanum(III) complexes were also proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Procházková, J. Hraníèek, V. Kubíèek and P. Hermann, Polyhedron, 111, 143 (2016); https://doi.org/10.1016/j.poly.2016.03.039
- Z.-Q. Xu, X.-J. Mao, L. Jia, J. Xu, T.-F. Zhu, H.-X. Cai, H.-Y. Bie, R.-H. Chen and T.-L. Ma, J. Mol. Struct., 1102, 86 (2015); https://doi.org/10.1016/j.molstruc.2015.07.047
- X. Yang, R.A. Jones and S. Huang, Coord. Chem. Rev., 273-274, 63 (2014); https://doi.org/10.1016/j.ccr.2013.11.012
- S.-D. Han, X.-H. Miao, S.-J. Liu and X.-H. Bu, Inorg. Chem. Front., 1,549 (2014); https://doi.org/10.1039/C4QI00073K
- R.W. Wen, S.D. Han, G.J. Ren, Z. Chang, Y.W. Li and X.H. Bu, Dalton Trans., 44, 10914 (2015); https://doi.org/10.1039/C4DT02445A
- D. Tian, Y. Li, R.-Y. Chen, Z. Chang, G.-Y. Wang and X.-H. Bu, J. Mater. Chem. A Mater. Energy Sustain., 2, 1465 (2014); https://doi.org/10.1039/C3TA13983B
- N. Cakic, S. Gündüz, R. Rengarasu and G. Angelovski, Tetrahedron Lett., 56, 759 (2015); https://doi.org/10.1016/j.tetlet.2014.12.087
- H. Zhou, Y. Jiang, M. Chen, Y. Wang, Y. Yao, B. Wu and D. Cui, J. Organomet. Chem., 763-764, 52 (2014); https://doi.org/10.1016/j.jorganchem.2014.04.017
- M.G. Lahoud, R.C.G. Frem, D.A. Gálico, G. Bannach, M.M. Nolasco, R.A.S. Ferreira and L.D. Carlos, J. Lumin., 170, 357 (2016); https://doi.org/10.1016/j.jlumin.2015.08.050
- Y. Hasegawa, Y. Kitagawa and T. Nakanishi, NPG Asia Mater., 10, 52 (2018); https://doi.org/10.1038/s41427-018-0012-y
- B. Cristóvão and Z. Hnatejko, J. Mol. Struct., 1088, 50 (2015); https://doi.org/10.1016/j.molstruc.2015.01.032
- R. Singh, K. Sharma and R.V. Singh, J. Sulfur Chem., 31, 61 (2010); https://doi.org/10.1080/17415990903173529
- S. Radhika, M. Kanthimathi, R. Parthasarathi and B.U. Nair, Transition Met. Chem., 32, 362 (2007); https://doi.org/10.1007/s11243-006-0180-4
- E. Niyama, H.F. Brito, M. Cremona, E.E.S. Teotonio, R. Reyes, G.E.S. Brito and M.C.F.C. Felinto, Spectrochim. Acta A Mol. Spectrochim. Acta, 61, 2643 (2005); https://doi.org/10.1016/j.saa.2004.10.006
- S. Cotton, Lanthanides and Actinides, John Wiley & Sons Ltd. (2006).
- E.G. Moore, A.P.S. Samuel and K.N. Raymond, Acc. Chem. Res., 42, 542 (2009); https://doi.org/10.1021/ar800211j
- A. Hussain and A.R. Chakravarty, J. Chem. Sci., 124, 1327 (2012); https://doi.org/10.1007/s12039-012-0332-3
- H. Jayasankar and P. Indrasenan, Indian J. Chem., 27A, 545 (1988).
- B. Kuncheria and P. Indrasenan, Indian J. Chem., 27A, 1005 (1988).
- H. Jayasankar and P. Indrasenan, J. Less Common Met., 132, 43 (1987); https://doi.org/10.1016/0022-5088(87)90172-X
- S. Umetani and H. Freiser, Inorg. Chem., 26, 3179 (1987); https://doi.org/10.1021/ic00266a023
- H. Jayasankar and P. Indrasenan, Indian J. Chem., 27A, 362 (1988).
- D. Zhou, Q. Li, C. Huang, G. Yao, S. Umetani, M. Matsui, L. Ying, A. Yu and X. Zhao, Polyhedron, 16, 1381 (1997);https://doi.org/10.1016/S0277-5387(96)00382-8
- J. Li, L. Zhang, L. Liu, G. Liu, D. Jia and G. Xu, Inorg. Chim. Acta, 360, 1995 (2007); https://doi.org/10.1016/j.ica.2006.10.010
- A.S. Orabi, Maced. J. Chem. Chem. Eng., 32, 25 (2013).
- E.M. Jincy and M.K. Muraleedharan Nair, Asian J. Chem., 30, 1037 (2018); https://doi.org/10.14233/ajchem.2018.21151
- I.M. Kolthoff and P.J. Elving, Treatise on Analytical Chemistry, vol. 8, Part II, Interscience: New York (1963).
- A.I. Vogel, A Text-book of Quantitative Inorganic Analysis, edn 3,Longman: London (1961).
- W.G. Palmer, Experimental Physical Chemistry, Cambridge University Press: Cambridge (1954).
- J.H. Van Vleck and N. Frank, Phys. Rev., 34, 1494 (1929); https://doi.org/10.1103/PhysRev.34.1494
- A. Earnshaw, Introduction to Mangnetochemistry, Academic Press: New York (1968).
- B. Nanda, S. Padmanavan, B. Tripathy and A.S. Mittra, J. Indian Chem. Soc., 52, 533 (1975).
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- I. Ali, W.A. Wani and K. Saleem, Synth. React. Inorg., 43, 1162 (2013); https://doi.org/10.1080/15533174.2012.756898
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Wiley, edn 5th (1997).
- N.F. Curtis and Y.M. Curtis, Inorg. Chem., 4, 804 (1965); https://doi.org/10.1021/ic50028a007
- A. Sabatini and I. Bertini, Inorg. Chem., 4, 1665 (1965); https://doi.org/10.1021/ic50033a032
- M.M. Chamberlain and J.C. Bailar Jr., J. Am. Chem. Soc., 81, 6412 (1959); https://doi.org/10.1021/ja01533a021
- A. Turco and C. Pecile, Nature, 191, 66 (1961); https://doi.org/10.1038/191066a0
- G.B. Deacon and R.J. Phillips, Coord. Chem. Rev., 33, 227 (1980); https://doi.org/10.1016/S0010-8545(00)80455-5
- K. Nakamoto, J. Fujita, S. Tanaka and M. Kobayashi, J. Am. Chem. Soc., 79, 4904 (1957); https://doi.org/10.1021/ja01575a020
- A.N. Freedman and B.P. Straughan, Spectrochim. Acta A Mol. Spectrosc.,27A, 1455 (1971); https://doi.org/10.1016/0584-8539(71)80095-8
- S. Hussain, X. Chen, W.T.A. Harrison, S. Ahmad, M.R.J. Elsegood, I.U. Khan and S. Muhammad, Front Chem., 7, 260 (2019); https://doi.org/10.3389/fchem.2019.00260
References
S. Procházková, J. Hraníèek, V. Kubíèek and P. Hermann, Polyhedron, 111, 143 (2016); https://doi.org/10.1016/j.poly.2016.03.039
Z.-Q. Xu, X.-J. Mao, L. Jia, J. Xu, T.-F. Zhu, H.-X. Cai, H.-Y. Bie, R.-H. Chen and T.-L. Ma, J. Mol. Struct., 1102, 86 (2015); https://doi.org/10.1016/j.molstruc.2015.07.047
X. Yang, R.A. Jones and S. Huang, Coord. Chem. Rev., 273-274, 63 (2014); https://doi.org/10.1016/j.ccr.2013.11.012
S.-D. Han, X.-H. Miao, S.-J. Liu and X.-H. Bu, Inorg. Chem. Front., 1,549 (2014); https://doi.org/10.1039/C4QI00073K
R.W. Wen, S.D. Han, G.J. Ren, Z. Chang, Y.W. Li and X.H. Bu, Dalton Trans., 44, 10914 (2015); https://doi.org/10.1039/C4DT02445A
D. Tian, Y. Li, R.-Y. Chen, Z. Chang, G.-Y. Wang and X.-H. Bu, J. Mater. Chem. A Mater. Energy Sustain., 2, 1465 (2014); https://doi.org/10.1039/C3TA13983B
N. Cakic, S. Gündüz, R. Rengarasu and G. Angelovski, Tetrahedron Lett., 56, 759 (2015); https://doi.org/10.1016/j.tetlet.2014.12.087
H. Zhou, Y. Jiang, M. Chen, Y. Wang, Y. Yao, B. Wu and D. Cui, J. Organomet. Chem., 763-764, 52 (2014); https://doi.org/10.1016/j.jorganchem.2014.04.017
M.G. Lahoud, R.C.G. Frem, D.A. Gálico, G. Bannach, M.M. Nolasco, R.A.S. Ferreira and L.D. Carlos, J. Lumin., 170, 357 (2016); https://doi.org/10.1016/j.jlumin.2015.08.050
Y. Hasegawa, Y. Kitagawa and T. Nakanishi, NPG Asia Mater., 10, 52 (2018); https://doi.org/10.1038/s41427-018-0012-y
B. Cristóvão and Z. Hnatejko, J. Mol. Struct., 1088, 50 (2015); https://doi.org/10.1016/j.molstruc.2015.01.032
R. Singh, K. Sharma and R.V. Singh, J. Sulfur Chem., 31, 61 (2010); https://doi.org/10.1080/17415990903173529
S. Radhika, M. Kanthimathi, R. Parthasarathi and B.U. Nair, Transition Met. Chem., 32, 362 (2007); https://doi.org/10.1007/s11243-006-0180-4
E. Niyama, H.F. Brito, M. Cremona, E.E.S. Teotonio, R. Reyes, G.E.S. Brito and M.C.F.C. Felinto, Spectrochim. Acta A Mol. Spectrochim. Acta, 61, 2643 (2005); https://doi.org/10.1016/j.saa.2004.10.006
S. Cotton, Lanthanides and Actinides, John Wiley & Sons Ltd. (2006).
E.G. Moore, A.P.S. Samuel and K.N. Raymond, Acc. Chem. Res., 42, 542 (2009); https://doi.org/10.1021/ar800211j
A. Hussain and A.R. Chakravarty, J. Chem. Sci., 124, 1327 (2012); https://doi.org/10.1007/s12039-012-0332-3
H. Jayasankar and P. Indrasenan, Indian J. Chem., 27A, 545 (1988).
B. Kuncheria and P. Indrasenan, Indian J. Chem., 27A, 1005 (1988).
H. Jayasankar and P. Indrasenan, J. Less Common Met., 132, 43 (1987); https://doi.org/10.1016/0022-5088(87)90172-X
S. Umetani and H. Freiser, Inorg. Chem., 26, 3179 (1987); https://doi.org/10.1021/ic00266a023
H. Jayasankar and P. Indrasenan, Indian J. Chem., 27A, 362 (1988).
D. Zhou, Q. Li, C. Huang, G. Yao, S. Umetani, M. Matsui, L. Ying, A. Yu and X. Zhao, Polyhedron, 16, 1381 (1997);https://doi.org/10.1016/S0277-5387(96)00382-8
J. Li, L. Zhang, L. Liu, G. Liu, D. Jia and G. Xu, Inorg. Chim. Acta, 360, 1995 (2007); https://doi.org/10.1016/j.ica.2006.10.010
A.S. Orabi, Maced. J. Chem. Chem. Eng., 32, 25 (2013).
E.M. Jincy and M.K. Muraleedharan Nair, Asian J. Chem., 30, 1037 (2018); https://doi.org/10.14233/ajchem.2018.21151
I.M. Kolthoff and P.J. Elving, Treatise on Analytical Chemistry, vol. 8, Part II, Interscience: New York (1963).
A.I. Vogel, A Text-book of Quantitative Inorganic Analysis, edn 3,Longman: London (1961).
W.G. Palmer, Experimental Physical Chemistry, Cambridge University Press: Cambridge (1954).
J.H. Van Vleck and N. Frank, Phys. Rev., 34, 1494 (1929); https://doi.org/10.1103/PhysRev.34.1494
A. Earnshaw, Introduction to Mangnetochemistry, Academic Press: New York (1968).
B. Nanda, S. Padmanavan, B. Tripathy and A.S. Mittra, J. Indian Chem. Soc., 52, 533 (1975).
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
I. Ali, W.A. Wani and K. Saleem, Synth. React. Inorg., 43, 1162 (2013); https://doi.org/10.1080/15533174.2012.756898
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Wiley, edn 5th (1997).
N.F. Curtis and Y.M. Curtis, Inorg. Chem., 4, 804 (1965); https://doi.org/10.1021/ic50028a007
A. Sabatini and I. Bertini, Inorg. Chem., 4, 1665 (1965); https://doi.org/10.1021/ic50033a032
M.M. Chamberlain and J.C. Bailar Jr., J. Am. Chem. Soc., 81, 6412 (1959); https://doi.org/10.1021/ja01533a021
A. Turco and C. Pecile, Nature, 191, 66 (1961); https://doi.org/10.1038/191066a0
G.B. Deacon and R.J. Phillips, Coord. Chem. Rev., 33, 227 (1980); https://doi.org/10.1016/S0010-8545(00)80455-5
K. Nakamoto, J. Fujita, S. Tanaka and M. Kobayashi, J. Am. Chem. Soc., 79, 4904 (1957); https://doi.org/10.1021/ja01575a020
A.N. Freedman and B.P. Straughan, Spectrochim. Acta A Mol. Spectrosc.,27A, 1455 (1971); https://doi.org/10.1016/0584-8539(71)80095-8
S. Hussain, X. Chen, W.T.A. Harrison, S. Ahmad, M.R.J. Elsegood, I.U. Khan and S. Muhammad, Front Chem., 7, 260 (2019); https://doi.org/10.3389/fchem.2019.00260