Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optical Studies of Binary Mixture of Chloro Substituted Benzene and n-Hexane or Cyclohexane or 1,4-Dioxane
Corresponding Author(s) : Sanjeev Maken
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
Thermophysical properties of binary liquid mixtures are highly beneficial for getting information about the intermolecular interactions and geometrical effects in the system. The chloro-substituted benzene compounds like 2-chlorotoluene, 4-chlorotoluene, 1,3-dichlorobenzene also have wide range of application in industrial and biomedical areas. In present work, the refractive indices (n) of haloarenes, hydrocarbons, ether, and respective possible binary mixtures were experimentally determined over the entire compositions at T= (298.15-318.15) K. The mixtures selected were 2-chlorotoluene or 4-chlorotoluene or 1,3-dichlorobenzene (1) + n-hexane or cyclohexane or 1,4-dioxane (2) with its possible combinations. The Δn is positive for all binary mixtures at all investigated compositions. Different rules of mixing like Lorentz-Lorentz, Erying-John, Arago-Biot, etc. were also used to predict n values. The Δn values were also analyzed in terms of ongoing intermolecular interactions among the components of the selected systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Nabi, M.A. Malik, C.G. Jesudason and S.A. Al-Thabaiti, Korean J. Chem. Eng., 31, 1505 (2014);https://doi.org/10.1007/s11814-014-0173-5
- A. Ali and A.K. Nain, Indian J. Pure. Appl. Phys., 39, 421 (2001).
- F. Aliotta, J. Chem. Phys., 126, 224508 (2007);https://doi.org/10.1063/1.2745292
- S.E. Taylor and H. Zeng, Colloids Interfaces, 4, 44 (2020);https://doi.org/10.3390/colloids4040044
- M. Yasmin, K.P. Singh, S. Parveen, M. Gupta and J.P. Shukla, Acta Phys. Poloncia A, 115, 890 (2009).
- V.K. Sharma, A. Rohilla, S.K. Jangra and D. Sharma, J. Solution Chem., 43, 2170 (2014);https://doi.org/10.1007/s10953-014-0266-0
- V.K. Sharma, R. Dua and D. Sharma, J. Chem. Thermodyn., 78, 241 (2014);https://doi.org/10.1016/j.jct.2014.06.030
- V.K. Sharma and R. Dua, J. Chem. Eng. Data, 59, 684 (2014);https://doi.org/10.1021/je400722h
- M.M. Mato, J. Balseiro, J. Salgado, E. Jiménez, J.L. Legido, M.M. Piñeiro and M.I. Paz Andrade, J. Chem. Eng. Data, 47, 4 (2002);https://doi.org/10.1021/je010040y
- A. Mukherjee and B. Bagchi, J. Phys. Chem. B, 105, 9581 (2001);https://doi.org/10.1021/jp011313z
- A. Mukherjee, G. Srinivas, S. Bhattacharyya and B. Bagchi, J. Chem. Sci., 113, 393 (2001);https://doi.org/10.1007/BF02708779
- R. Devi, S. Gahlyan, M. Rani and S. Maken, Asian J. Chem., 30, 2054 (2018);https://doi.org/10.14233/ajchem.2018.21436
- S. Gahlyan, M. Rani, R. Devi, S.-J. Park and S. Maken, J. Mol. Liq., 306, 112605 (2020);https://doi.org/10.1016/j.molliq.2020.112605
- P. Kashyap, M. Rani and D.P. Tiwari, Asian J. Chem., 32, 303 (2020);https://doi.org/10.14233/ajchem.2020.22354
- A.L. Vogel, A Text Book of Practical Organic Chemistry, edn. 4 (1978).
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvent: Physical Properties and Methods of Purification, Wiley: New York (1986).
- S.C. Bhatia, R. Rani, J. Sangwan and R. Bhatia, Int. J. Thermophys., 32, 1163 (2011);https://doi.org/10.1007/s10765-011-0995-x
- V.K. Sharma, A. Rohilla, J.S. Yadav, S. Solanki and D. Sharma, J. Chem. Eng. Data, 58, 2979 (2013);https://doi.org/10.1021/je400408w
- P. Góralski and H. Piekarski, J. Chem. Eng. Data, 52, 655 (2007);https://doi.org/10.1021/je600573w
- G. Praveen Chand, M. Gowri Sankar, P.N.V.V.L. Prameela Rani and C. Rambabu, J. Mol. Liq., 201, 1 (2015);https://doi.org/10.1016/j.molliq.2014.10.025
- R. Tanaka and G.C. Benson, J. Chem. Eng. Data, 23, 75 (1978);https://doi.org/10.1021/je60076a024
- M.F. Bolotnikov, Y.A. Neruchev, Y.F. Melikhov, V.N. Verveyko and M.V. Verveyko, J. Chem. Eng. Data, 50, 1095 (2005);https://doi.org/10.1021/je050060q
- B.E. de Cominges, M.M. Piñeiro, L. Mosteiro, T.P. Iglesias, J.L. Legido and M.I. Paz Andrade, J. Chem. Eng. Data, 46, 1206 (2001);https://doi.org/10.1021/je010039z
- A. Blanco, A. Gayol, D. Gómez and J.M. Navaza, Phys. Chem. Liq., 51, 233 (2013);https://doi.org/10.1080/00319104.2012.737792
- P. Kashyap, M. Rani and D.P. Tiwari, Asian J. Chem., 32, 303 (2020);https://doi.org/10.14233/ajchem.2020.22354
- T.M. Aminabhavi and V.B. Patil, J. Chem. Eng. Data, 42, 641 (1997);https://doi.org/10.1021/je960382h
- H. Shekaari, M.T. Zafarani-Moattar and N. Jabbarvand Behrooz, J. Chem. Thermodyn., 86, 188 (2015);https://doi.org/10.1016/j.jct.2015.03.004
- S.P. Ijardar and N.I. Malek, J. Chem. Thermodyn., 71, 236 (2014);https://doi.org/10.1016/j.jct.2013.11.027
- M. Habibullah, I.M.M. Rahman, M.A. Uddin, M. Anowar, M. Alam, K. Iwakabe and H. Hasegawa, J. Chem. Eng. Data, 58, 2887 (2013);https://doi.org/10.1021/je400512u
- N.I. Malek, S.P. Ijardar and S.B. Oswal, Thermochim. Acta, 539, 71 (2012);https://doi.org/10.1016/j.tca.2012.04.002
- T.M. Aminabhavi, V.B. Patil, M.I. Aralaguppi and H.T.S. Phayde, J. Chem. Eng. Data, 41, 521 (1996);https://doi.org/10.1021/je950279c
- O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948);https://doi.org/10.1021/ie50458a036
- S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 219, 1107 (2016);https://doi.org/10.1016/j.molliq.2016.04.011
- C.W. Beckett, K.S. Pitzer and R. Spitzer, J. Am. Chem. Soc., 69, 2488 (1947);https://doi.org/10.1021/ja01202a070
- R.P. Singh and C.P. Sinha, J. Chem. Eng. Data, 29, 132 (1984);https://doi.org/10.1021/je00036a010
References
F. Nabi, M.A. Malik, C.G. Jesudason and S.A. Al-Thabaiti, Korean J. Chem. Eng., 31, 1505 (2014);https://doi.org/10.1007/s11814-014-0173-5
A. Ali and A.K. Nain, Indian J. Pure. Appl. Phys., 39, 421 (2001).
F. Aliotta, J. Chem. Phys., 126, 224508 (2007);https://doi.org/10.1063/1.2745292
S.E. Taylor and H. Zeng, Colloids Interfaces, 4, 44 (2020);https://doi.org/10.3390/colloids4040044
M. Yasmin, K.P. Singh, S. Parveen, M. Gupta and J.P. Shukla, Acta Phys. Poloncia A, 115, 890 (2009).
V.K. Sharma, A. Rohilla, S.K. Jangra and D. Sharma, J. Solution Chem., 43, 2170 (2014);https://doi.org/10.1007/s10953-014-0266-0
V.K. Sharma, R. Dua and D. Sharma, J. Chem. Thermodyn., 78, 241 (2014);https://doi.org/10.1016/j.jct.2014.06.030
V.K. Sharma and R. Dua, J. Chem. Eng. Data, 59, 684 (2014);https://doi.org/10.1021/je400722h
M.M. Mato, J. Balseiro, J. Salgado, E. Jiménez, J.L. Legido, M.M. Piñeiro and M.I. Paz Andrade, J. Chem. Eng. Data, 47, 4 (2002);https://doi.org/10.1021/je010040y
A. Mukherjee and B. Bagchi, J. Phys. Chem. B, 105, 9581 (2001);https://doi.org/10.1021/jp011313z
A. Mukherjee, G. Srinivas, S. Bhattacharyya and B. Bagchi, J. Chem. Sci., 113, 393 (2001);https://doi.org/10.1007/BF02708779
R. Devi, S. Gahlyan, M. Rani and S. Maken, Asian J. Chem., 30, 2054 (2018);https://doi.org/10.14233/ajchem.2018.21436
S. Gahlyan, M. Rani, R. Devi, S.-J. Park and S. Maken, J. Mol. Liq., 306, 112605 (2020);https://doi.org/10.1016/j.molliq.2020.112605
P. Kashyap, M. Rani and D.P. Tiwari, Asian J. Chem., 32, 303 (2020);https://doi.org/10.14233/ajchem.2020.22354
A.L. Vogel, A Text Book of Practical Organic Chemistry, edn. 4 (1978).
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvent: Physical Properties and Methods of Purification, Wiley: New York (1986).
S.C. Bhatia, R. Rani, J. Sangwan and R. Bhatia, Int. J. Thermophys., 32, 1163 (2011);https://doi.org/10.1007/s10765-011-0995-x
V.K. Sharma, A. Rohilla, J.S. Yadav, S. Solanki and D. Sharma, J. Chem. Eng. Data, 58, 2979 (2013);https://doi.org/10.1021/je400408w
P. Góralski and H. Piekarski, J. Chem. Eng. Data, 52, 655 (2007);https://doi.org/10.1021/je600573w
G. Praveen Chand, M. Gowri Sankar, P.N.V.V.L. Prameela Rani and C. Rambabu, J. Mol. Liq., 201, 1 (2015);https://doi.org/10.1016/j.molliq.2014.10.025
R. Tanaka and G.C. Benson, J. Chem. Eng. Data, 23, 75 (1978);https://doi.org/10.1021/je60076a024
M.F. Bolotnikov, Y.A. Neruchev, Y.F. Melikhov, V.N. Verveyko and M.V. Verveyko, J. Chem. Eng. Data, 50, 1095 (2005);https://doi.org/10.1021/je050060q
B.E. de Cominges, M.M. Piñeiro, L. Mosteiro, T.P. Iglesias, J.L. Legido and M.I. Paz Andrade, J. Chem. Eng. Data, 46, 1206 (2001);https://doi.org/10.1021/je010039z
A. Blanco, A. Gayol, D. Gómez and J.M. Navaza, Phys. Chem. Liq., 51, 233 (2013);https://doi.org/10.1080/00319104.2012.737792
P. Kashyap, M. Rani and D.P. Tiwari, Asian J. Chem., 32, 303 (2020);https://doi.org/10.14233/ajchem.2020.22354
T.M. Aminabhavi and V.B. Patil, J. Chem. Eng. Data, 42, 641 (1997);https://doi.org/10.1021/je960382h
H. Shekaari, M.T. Zafarani-Moattar and N. Jabbarvand Behrooz, J. Chem. Thermodyn., 86, 188 (2015);https://doi.org/10.1016/j.jct.2015.03.004
S.P. Ijardar and N.I. Malek, J. Chem. Thermodyn., 71, 236 (2014);https://doi.org/10.1016/j.jct.2013.11.027
M. Habibullah, I.M.M. Rahman, M.A. Uddin, M. Anowar, M. Alam, K. Iwakabe and H. Hasegawa, J. Chem. Eng. Data, 58, 2887 (2013);https://doi.org/10.1021/je400512u
N.I. Malek, S.P. Ijardar and S.B. Oswal, Thermochim. Acta, 539, 71 (2012);https://doi.org/10.1016/j.tca.2012.04.002
T.M. Aminabhavi, V.B. Patil, M.I. Aralaguppi and H.T.S. Phayde, J. Chem. Eng. Data, 41, 521 (1996);https://doi.org/10.1021/je950279c
O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948);https://doi.org/10.1021/ie50458a036
S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 219, 1107 (2016);https://doi.org/10.1016/j.molliq.2016.04.011
C.W. Beckett, K.S. Pitzer and R. Spitzer, J. Am. Chem. Soc., 69, 2488 (1947);https://doi.org/10.1021/ja01202a070
R.P. Singh and C.P. Sinha, J. Chem. Eng. Data, 29, 132 (1984);https://doi.org/10.1021/je00036a010