Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis and in vitro Antibacterial Evaluation of Naphthalen-2-yloxy based Oxadiazole-2-thione Derivatives
Corresponding Author(s) : Vivek Kumar
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
A series of novel Mannich bases 5-(naphthalen-2-yloxymethyl)-3-(substituted)aminomethyl-3H-[1,3,4]oxadiazole-2-thiones (5a-h) were synthesized by aminomethylation of substituted-1,3,4-oxadiazole-2(3H)-thione by equimolar concentration of primary or secondary amines. Synthesized compounds were characterized by spectrometric techniques (IR, 1H & 13C NMR), and evaluated for antibacterial potential against various Gram-positive and Gram-negative bacterial strains using cup-plate method employing ciprofloxacin as standard drug. Compounds 5a-c and 5g exhibited strong antibacterial activity against tested bacterial strains. Compound 5a was active against Bacillus pumilus, Shigella dysenteriae and Vibrio cholera; compound 5b exhibited significant activity against Bacillus pumilus, and Shigella dysenteriae; compound 5c was active against Bacillus pumilus and Vibrio cholera and compound 5g was active against Dshigella boydii and Acinetobacter aceti bacterial strains. The SAR study revealed that the synthesized compounds (5a-h) having less bulky group exhibited good antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Katritzky, C.A. Ramsden, J.A. Joule and V.V. Zhdankin, Handbook of Heterocyclic Chemistry, Elsevier: New York, edn 3, pp. 20-50 (2010).
- G. Rai, C.J. Thomas, W. Leister and D.J. Maloney, Tetrahedron Lett., 50, 1710 (2009);https://doi.org/10.1016/j.tetlet.2009.01.120
- C.B. Vicentini, D. Mares, A. Tartari, M. Manfrini and G. Forlani, J. Agric. Food Chem., 52, 1898 (2004);https://doi.org/10.1021/jf035115b
- H.Z.S. Huma, R. Halder, S.S. Kalra, J. Das and J. Iqbal, Tetrahedron Lett., 43, 6485 (2002);https://doi.org/10.1016/S0040-4039(02)01240-6
- A. Lévai, Chem. Heterocycl. Compd., 33, 647 (1997);https://doi.org/10.1007/BF02291794
- A.V. Kel’in, A.W. Sromek and V. Gevorgyan, J. Am. Chem. Soc., 123, 2074 (2001);https://doi.org/10.1021/ja0058684
- L. Tao, J. Liu, J. Xu and T.P. Davis, Org. Biomol. Chem., 7, 3481 (2009);https://doi.org/10.1039/b907061c
- M. Mohammadi-Khanaposhtani, M. Shabani, M. Faizi, I. Aghaei, R. Jahani, Z. Sharafi, N. Shamsaei Zafarghandi, M. Mahdavi, T. Akbarzadeh, S. Emami, A. Shafiee and A. Foroumadi, Eur. J. Med. Chem., 112, 91 (2016);https://doi.org/10.1016/j.ejmech.2016.01.054
- S. Bala, S. Kamboj, A. Kajal, V. Saini and D.N. Prasad, BioMed. Res. Int., 2014, 172791 (2014);https://doi.org/10.1155/2014/172791
- R.M. Christoff, G.L. Murray, X.P. Kostoulias, A.Y. Peleg and B.M. Abbott, Bioorg. Med. Chem., 25, 6267 (2017);https://doi.org/10.1016/j.bmc.2017.08.015
- S.P. de Oliveira Assis, M.T. da Silva, R.N. de Oliveira and V.L. de Menezes Lima, Scientific World J., 2012, 925925 (2012);https://doi.org/10.1100/2012/925925
- A.G. Banerjee, N. Das, S.A. Shengule, R.S. Srivastava and S.K. Shrivastava, Eur. J. Med. Chem., 101, 81 (2015);https://doi.org/10.1016/j.ejmech.2015.06.020
- G. Sahin, E. Palaska, M. Ekizoglu and M. Özalp, Il Farmaco, 57, 539 (2002);https://doi.org/10.1016/S0014-827X(02)01245-4
- A. Zarghi, S.A. Tabatabai, M. Faizi, A. Ahadian, P. Navabi, V. Zanganeh and A. Shafiee, Bioorg. Med. Chem. Lett., 15, 1863 (2005);https://doi.org/10.1016/j.bmcl.2005.02.014
- X.M. Zhang, M. Qiu, J. Sun, Y.B. Zhang, Y.S. Yang, X.L. Wang, J.F. Tang and H.L. Zhu, Bioorg. Med. Chem., 19, 6518 (2011);https://doi.org/10.1016/j.bmc.2011.08.013
- M. Zareef, R. Iqbal, N.G. De Dominguez, J. Rodrigues, J.H. Zaidi, M. Arfan and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 22, 301 (2007);https://doi.org/10.1080/14756360601114569
- T.M. Tan, Y. Chen, K.H. Kong, J. Bai, Y. Li, S.G. Lim, T.H. Ang and Y. Lam, Antiviral Res., 71, 7 (2006);https://doi.org/10.1016/j.antiviral.2006.02.007
- S.X. Huang, J.F. Mou, Q. Luo, Q.H. Mo, X.L. Zhou, X. Huang, Q. Xu, X.D. Tan, X. Chen, C.Q. Liang and B. Anti-Hepatitis, Molecules, 24, 3475 (2019);https://doi.org/10.3390/molecules24193475
- S.P. Sakthinathan, G. Vanangamudi and G. Thirunarayanan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 95, 693 (2012);https://doi.org/10.1016/j.saa.2012.04.082
- M.A. Sheat and Z.F. Saeed, Iraqi National J. Chem., 21, 53 (2006).
- M. Tramontini and L. Angiolini, Mannich Bases-Chemistry and Uses, CRC Press: Boca Raton (1994).
- G.L. Almãjan, S.F. Bãrbuceanu and C. Drãghici, Rev. Chim., (Bucharest), 57, 1108 (2006).
- X.P. Hui, C.H. Chu, Z.Y. Zhang, Q. Wang and Q. Zhang, Indian J. Chem., 41B, 2176 (2002).
- H. Gershon, M.W. McNeil, R. Parmegiani and P.K. Godfrey, Appl. Microbiol., 22, 438 (1971);https://doi.org/10.1128/AM.22.3.438-440.1971
References
A.R. Katritzky, C.A. Ramsden, J.A. Joule and V.V. Zhdankin, Handbook of Heterocyclic Chemistry, Elsevier: New York, edn 3, pp. 20-50 (2010).
G. Rai, C.J. Thomas, W. Leister and D.J. Maloney, Tetrahedron Lett., 50, 1710 (2009);https://doi.org/10.1016/j.tetlet.2009.01.120
C.B. Vicentini, D. Mares, A. Tartari, M. Manfrini and G. Forlani, J. Agric. Food Chem., 52, 1898 (2004);https://doi.org/10.1021/jf035115b
H.Z.S. Huma, R. Halder, S.S. Kalra, J. Das and J. Iqbal, Tetrahedron Lett., 43, 6485 (2002);https://doi.org/10.1016/S0040-4039(02)01240-6
A. Lévai, Chem. Heterocycl. Compd., 33, 647 (1997);https://doi.org/10.1007/BF02291794
A.V. Kel’in, A.W. Sromek and V. Gevorgyan, J. Am. Chem. Soc., 123, 2074 (2001);https://doi.org/10.1021/ja0058684
L. Tao, J. Liu, J. Xu and T.P. Davis, Org. Biomol. Chem., 7, 3481 (2009);https://doi.org/10.1039/b907061c
M. Mohammadi-Khanaposhtani, M. Shabani, M. Faizi, I. Aghaei, R. Jahani, Z. Sharafi, N. Shamsaei Zafarghandi, M. Mahdavi, T. Akbarzadeh, S. Emami, A. Shafiee and A. Foroumadi, Eur. J. Med. Chem., 112, 91 (2016);https://doi.org/10.1016/j.ejmech.2016.01.054
S. Bala, S. Kamboj, A. Kajal, V. Saini and D.N. Prasad, BioMed. Res. Int., 2014, 172791 (2014);https://doi.org/10.1155/2014/172791
R.M. Christoff, G.L. Murray, X.P. Kostoulias, A.Y. Peleg and B.M. Abbott, Bioorg. Med. Chem., 25, 6267 (2017);https://doi.org/10.1016/j.bmc.2017.08.015
S.P. de Oliveira Assis, M.T. da Silva, R.N. de Oliveira and V.L. de Menezes Lima, Scientific World J., 2012, 925925 (2012);https://doi.org/10.1100/2012/925925
A.G. Banerjee, N. Das, S.A. Shengule, R.S. Srivastava and S.K. Shrivastava, Eur. J. Med. Chem., 101, 81 (2015);https://doi.org/10.1016/j.ejmech.2015.06.020
G. Sahin, E. Palaska, M. Ekizoglu and M. Özalp, Il Farmaco, 57, 539 (2002);https://doi.org/10.1016/S0014-827X(02)01245-4
A. Zarghi, S.A. Tabatabai, M. Faizi, A. Ahadian, P. Navabi, V. Zanganeh and A. Shafiee, Bioorg. Med. Chem. Lett., 15, 1863 (2005);https://doi.org/10.1016/j.bmcl.2005.02.014
X.M. Zhang, M. Qiu, J. Sun, Y.B. Zhang, Y.S. Yang, X.L. Wang, J.F. Tang and H.L. Zhu, Bioorg. Med. Chem., 19, 6518 (2011);https://doi.org/10.1016/j.bmc.2011.08.013
M. Zareef, R. Iqbal, N.G. De Dominguez, J. Rodrigues, J.H. Zaidi, M. Arfan and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 22, 301 (2007);https://doi.org/10.1080/14756360601114569
T.M. Tan, Y. Chen, K.H. Kong, J. Bai, Y. Li, S.G. Lim, T.H. Ang and Y. Lam, Antiviral Res., 71, 7 (2006);https://doi.org/10.1016/j.antiviral.2006.02.007
S.X. Huang, J.F. Mou, Q. Luo, Q.H. Mo, X.L. Zhou, X. Huang, Q. Xu, X.D. Tan, X. Chen, C.Q. Liang and B. Anti-Hepatitis, Molecules, 24, 3475 (2019);https://doi.org/10.3390/molecules24193475
S.P. Sakthinathan, G. Vanangamudi and G. Thirunarayanan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 95, 693 (2012);https://doi.org/10.1016/j.saa.2012.04.082
M.A. Sheat and Z.F. Saeed, Iraqi National J. Chem., 21, 53 (2006).
M. Tramontini and L. Angiolini, Mannich Bases-Chemistry and Uses, CRC Press: Boca Raton (1994).
G.L. Almãjan, S.F. Bãrbuceanu and C. Drãghici, Rev. Chim., (Bucharest), 57, 1108 (2006).
X.P. Hui, C.H. Chu, Z.Y. Zhang, Q. Wang and Q. Zhang, Indian J. Chem., 41B, 2176 (2002).
H. Gershon, M.W. McNeil, R. Parmegiani and P.K. Godfrey, Appl. Microbiol., 22, 438 (1971);https://doi.org/10.1128/AM.22.3.438-440.1971