Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Can Aromaticity of Fused Aromatic Ring in 1,3-Pentadiene Modulate its Reactivity towards [1,5]-Halo Shift? - A DFT Study
Corresponding Author(s) : Lakshminarayanan Akilandeshwari
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
In (Z)-1,3-pentadienes, [1,5]-H migration is suprafacially allowed while fluorine shift in this system takes place by a Contra Hoffmann antarafacial pathway for which aromaticity is the driving force. If aromaticity of the transition structure (TS) can drive a reaction towards a disallowed pathway as found in the case of fluorine, the role of aromatic ring annealed to (Z)-1,3-pentadienes in determining the reaction pathway and barrier is worth noting. Hence, the combined role of aromaticity of transition state and the loss in aromaticity of the annealed ring has been explored during the [1,5]-X (X = H, F, Cl, Br) shifts in aromatic (benzene/naphthalene) annealed 1,3-pentadiene system. Notable correlations between various aromaticity index NICS(0,1) with activation barriers show that aromaticity of transition structure in pericyclic reaction can drive the stereochemical course of a reaction. The distinct effect of fluorine to other halogens is the antara migration while the other halogens (Cl & Br) prefer supramode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 87, 2511 (1965);https://doi.org/10.1021/ja01089a050
- T.H. Lowry and K.S. Richardson, Mechanism of Theory in Organic Chemistry, Harper and Row Publishers: New York (1987).
- K.N. Houk, eds.: A. Scott, Pericyclic Reactions and Orbital Symmetry, In: Survey of Progress in Chemistry, Academic Press, vol. 6, p. 113 (1973).
- D.S. Glass, R.S. Boikess and S. Winstein, Tetrahedron Lett., 7, 999 (1966);https://doi.org/10.1016/S0040-4039(00)70230-9
- J.E. Baldwin, P.A. Leber and T.W. Lee, J. Org. Chem., 66, 5269 (2001);https://doi.org/10.1021/jo010389o
- J.J. Looker, J. Org. Chem., 37, 1059 (1972);https://doi.org/10.1021/jo00972a035
- J. Zhao, R.Y. Zhang and S.W. North, Chem. Phys. Lett., 369, 204 (2003); https://doi.org/10.1016/S0009-2614(02)02006-7
- Y.-L. Lin and E. Turos, J. Org. Chem., 66, 8751 (2001); https://doi.org/10.1021/jo0103221
- H.P. Wu, R. Aumann, R. Frohlich, B. Wibbeling and O. Kataeva, Chem. Eur. J., 7, 5084 (2001); https://doi.org/10.1002/1521-3765(20011203)7:23<5084::AID-CHEM5084>3.0.CO;2-H
- I.V. Alabugin, M. Manoharan, B. Breiner and F.D. Lewis, J. Am. Chem. Soc., 125, 9329 (2003); https://doi.org/10.1021/ja035729x
- J. Wolinsky, B. Chollar and M. Baird, J. Am. Chem. Soc., 84, 2775 (1962); https://doi.org/10.1021/ja00873a027
- N.G. Rondan and K.N. Houk, Tetrahedron Lett., 25, 2519 (1984); https://doi.org/10.1016/S0040-4039(01)81220-X
- N.J. Saettel and O. Wiest, J. Org. Chem., 65, 2331 (2000); https://doi.org/10.1021/jo991488t
- B.A. Hess and J.E. Baldwin, J. Org. Chem., 67, 6025 (2002); https://doi.org/10.1021/jo025917q
- T. Okajima and K. Imafuku, J. Org. Chem., 67, 625 (2002); https://doi.org/10.1021/jo010084+
- K.N. Houk, Y. Li and J.D. Evanseck, Angew. Chem. Int. Ed. Engl., 31, 682 (1992); https://doi.org/10.1002/anie.199206821
- L. Akilandeswari, Ph.D. Thesis, Modelling Tandem Reactions, Bharathidasan University, Tiruchirappalli, India, p. 110 (2007).
- L. Akilandeswari and C. Prathipa, J. Chem. Sci., 127, 1505 (2015); https://doi.org/10.1007/s12039-015-0936-5
- K.N. Houk, J. Gonzalez and Y. Li, Acc. Chem. Res., 28, 81 (1995); https://doi.org/10.1021/ar00050a004
- J.E. Baldwin and B.M. Broline, J. Org. Chem., 47, 1385 (1982); https://doi.org/10.1021/jo00347a001
- H. Jiao and P.R. Schleyer, J. Phys. Org. Chem., 11, 655 (1998); https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U
- P.B. Karadakov, J.G. Hill and D.L. Cooper, Faraday Discuss., 135, 285 (2007); https://doi.org/10.1039/B605100F
- W.R. Roth and J. Konig, Liebigs Ann. Chem., 699, 24 (1966); https://doi.org/10.1002/jlac.19666990103
- M. Manoharan, F. De Proft and P. Geerlings, J. Chem. Soc. Perkin Trans. II, 8, 1767 (2000); https://doi.org/10.1039/b002344m
- M. Manoharan, F. De Proft and P. Geerlings, J. Org. Chem., 65, 7971 (2000); https://doi.org/10.1021/jo001156k
- M. Manoharan, F. De Proft and P. Geerlings, J. Org. Chem., 65, 6132 (2000); https://doi.org/10.1021/jo000588s
- M. Manoharan and P. Venuvanalingam, J. Phys. Org. Chem., 10, 768 (1997); https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<768::AID-POC938>3.0.CO;2-6
- R.B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press: New York, edn 1 (1971).
- H. Nohira and T. Nohira, J. Theor. Comput. Chem., 16, 1750055 (2017); https://doi.org/10.1142/S0219633617500559
- L. Akilandeswari, M. Jaccob and P. Venuvanalingam, J. Chem. Sci., 121, 859 (2009); https://doi.org/10.1007/s12039-009-0101-0
- S. Yamabe, N. Tsuchida and S. Yamazaki, J. Chem. Theory Comput., 1, 944 (2005); https://doi.org/10.1021/ct0500646
- B.S. Jursic, J. Mol. Struct., 427, 165 (1998); https://doi.org/10.1016/S0166-1280(97)00209-1
- J. Clarke, P.W. Fowler, S. Gronert and J.R. Keeffe, J. Org. Chem., 81, 8777 (2016); https://doi.org/10.1021/acs.joc.6b01261
- Y. Itou, S. Mori, T. Udagawa, M. Tachikawa, T. Ishimoto and U. Nagashima, J. Phys. Chem. A, 111, 261 (2007); https://doi.org/10.1021/jp065759x
- L.S. Kobrina and V.N. Kovtonyuk, Russ. Chem. Rev., 57, 62 (1988); https://doi.org/10.1070/RC1988v057n01ABEH003335
- F.D. Lewis, X. Zuo, V. Gevorgyan and M. Rubin, J. Am. Chem. Soc., 124, 13664 (2002); https://doi.org/10.1021/ja028251q
- P. Kalpana and L. Akilandeswari, J. Phys. Org. Chem., 32, e3991 (2019); https://doi.org/10.1002/poc.3991
- A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter Mater. Phys., 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 98, Review A.9. Gaussian, Inc., Pittsburgh PA (1998).
- P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R. van Eikema Hommes, J. Am. Chem. Soc., 118, 6317 (1996); https://doi.org/10.1021/ja960582d
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- L. Akilandeswari and P. Venuvanalingam, J. Theor. Comput. Chem., 6, 233 (2007); https://doi.org/10.1142/S0219633607003040
References
R.B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 87, 2511 (1965);https://doi.org/10.1021/ja01089a050
T.H. Lowry and K.S. Richardson, Mechanism of Theory in Organic Chemistry, Harper and Row Publishers: New York (1987).
K.N. Houk, eds.: A. Scott, Pericyclic Reactions and Orbital Symmetry, In: Survey of Progress in Chemistry, Academic Press, vol. 6, p. 113 (1973).
D.S. Glass, R.S. Boikess and S. Winstein, Tetrahedron Lett., 7, 999 (1966);https://doi.org/10.1016/S0040-4039(00)70230-9
J.E. Baldwin, P.A. Leber and T.W. Lee, J. Org. Chem., 66, 5269 (2001);https://doi.org/10.1021/jo010389o
J.J. Looker, J. Org. Chem., 37, 1059 (1972);https://doi.org/10.1021/jo00972a035
J. Zhao, R.Y. Zhang and S.W. North, Chem. Phys. Lett., 369, 204 (2003); https://doi.org/10.1016/S0009-2614(02)02006-7
Y.-L. Lin and E. Turos, J. Org. Chem., 66, 8751 (2001); https://doi.org/10.1021/jo0103221
H.P. Wu, R. Aumann, R. Frohlich, B. Wibbeling and O. Kataeva, Chem. Eur. J., 7, 5084 (2001); https://doi.org/10.1002/1521-3765(20011203)7:23<5084::AID-CHEM5084>3.0.CO;2-H
I.V. Alabugin, M. Manoharan, B. Breiner and F.D. Lewis, J. Am. Chem. Soc., 125, 9329 (2003); https://doi.org/10.1021/ja035729x
J. Wolinsky, B. Chollar and M. Baird, J. Am. Chem. Soc., 84, 2775 (1962); https://doi.org/10.1021/ja00873a027
N.G. Rondan and K.N. Houk, Tetrahedron Lett., 25, 2519 (1984); https://doi.org/10.1016/S0040-4039(01)81220-X
N.J. Saettel and O. Wiest, J. Org. Chem., 65, 2331 (2000); https://doi.org/10.1021/jo991488t
B.A. Hess and J.E. Baldwin, J. Org. Chem., 67, 6025 (2002); https://doi.org/10.1021/jo025917q
T. Okajima and K. Imafuku, J. Org. Chem., 67, 625 (2002); https://doi.org/10.1021/jo010084+
K.N. Houk, Y. Li and J.D. Evanseck, Angew. Chem. Int. Ed. Engl., 31, 682 (1992); https://doi.org/10.1002/anie.199206821
L. Akilandeswari, Ph.D. Thesis, Modelling Tandem Reactions, Bharathidasan University, Tiruchirappalli, India, p. 110 (2007).
L. Akilandeswari and C. Prathipa, J. Chem. Sci., 127, 1505 (2015); https://doi.org/10.1007/s12039-015-0936-5
K.N. Houk, J. Gonzalez and Y. Li, Acc. Chem. Res., 28, 81 (1995); https://doi.org/10.1021/ar00050a004
J.E. Baldwin and B.M. Broline, J. Org. Chem., 47, 1385 (1982); https://doi.org/10.1021/jo00347a001
H. Jiao and P.R. Schleyer, J. Phys. Org. Chem., 11, 655 (1998); https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U
P.B. Karadakov, J.G. Hill and D.L. Cooper, Faraday Discuss., 135, 285 (2007); https://doi.org/10.1039/B605100F
W.R. Roth and J. Konig, Liebigs Ann. Chem., 699, 24 (1966); https://doi.org/10.1002/jlac.19666990103
M. Manoharan, F. De Proft and P. Geerlings, J. Chem. Soc. Perkin Trans. II, 8, 1767 (2000); https://doi.org/10.1039/b002344m
M. Manoharan, F. De Proft and P. Geerlings, J. Org. Chem., 65, 7971 (2000); https://doi.org/10.1021/jo001156k
M. Manoharan, F. De Proft and P. Geerlings, J. Org. Chem., 65, 6132 (2000); https://doi.org/10.1021/jo000588s
M. Manoharan and P. Venuvanalingam, J. Phys. Org. Chem., 10, 768 (1997); https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<768::AID-POC938>3.0.CO;2-6
R.B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press: New York, edn 1 (1971).
H. Nohira and T. Nohira, J. Theor. Comput. Chem., 16, 1750055 (2017); https://doi.org/10.1142/S0219633617500559
L. Akilandeswari, M. Jaccob and P. Venuvanalingam, J. Chem. Sci., 121, 859 (2009); https://doi.org/10.1007/s12039-009-0101-0
S. Yamabe, N. Tsuchida and S. Yamazaki, J. Chem. Theory Comput., 1, 944 (2005); https://doi.org/10.1021/ct0500646
B.S. Jursic, J. Mol. Struct., 427, 165 (1998); https://doi.org/10.1016/S0166-1280(97)00209-1
J. Clarke, P.W. Fowler, S. Gronert and J.R. Keeffe, J. Org. Chem., 81, 8777 (2016); https://doi.org/10.1021/acs.joc.6b01261
Y. Itou, S. Mori, T. Udagawa, M. Tachikawa, T. Ishimoto and U. Nagashima, J. Phys. Chem. A, 111, 261 (2007); https://doi.org/10.1021/jp065759x
L.S. Kobrina and V.N. Kovtonyuk, Russ. Chem. Rev., 57, 62 (1988); https://doi.org/10.1070/RC1988v057n01ABEH003335
F.D. Lewis, X. Zuo, V. Gevorgyan and M. Rubin, J. Am. Chem. Soc., 124, 13664 (2002); https://doi.org/10.1021/ja028251q
P. Kalpana and L. Akilandeswari, J. Phys. Org. Chem., 32, e3991 (2019); https://doi.org/10.1002/poc.3991
A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter Mater. Phys., 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 98, Review A.9. Gaussian, Inc., Pittsburgh PA (1998).
P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R. van Eikema Hommes, J. Am. Chem. Soc., 118, 6317 (1996); https://doi.org/10.1021/ja960582d
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
L. Akilandeswari and P. Venuvanalingam, J. Theor. Comput. Chem., 6, 233 (2007); https://doi.org/10.1142/S0219633607003040