Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Photocatalytic and Electrochemical Studies of Reduced Graphene Oxide Doped Nickel Oxide Nanocomposites
Corresponding Author(s) : Kuppusamy Krishnasamy
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
Elimination of organic pollutants from waste waters under the sunlight irradiation is a venerable challenge in the fields of environmental and materials science. This work aims to the fabrication of novel self-assembled, controlled rGO@NiO nanocomposite using eco-friendly simple co-precipitation method. The crystallite size, morphology and optical properties of the rGO, NiO and rGO@NiO were characterized using TG/DTA, FTIR, UV, XRD, SEM with EDAX and TEM techniques. The optical bandgap of the pure NiO, rGO and rGO@NiO nanocomposites was estimated as 3.75, 5.43 and 3.64 eV, respectively. Hence rGO@NiO nanocomposite might be considered as a semi-conductor and can be utilized as a photocatalyst. The photocatalytic activity of prepared rGO@NiO nanocomposite was evaluated by using rhodamine B and methyl violet dyes. The degradation results revealed that almost 90% of dye degradation is carried out within a period of 60 min. The cyclic voltammetry studies indicated that the prepared rGO@NiO nanomaterials exhibited appreciable super capacitance value (233 F g-1) at a current density of 1 A g-1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.-H. Li, J.-H. Yum, S.-J. Moon and P. Chen, Energies, 9, 331 (2016);https://doi.org/10.3390/en9050331
- B. Tong and M. Ichimura, Electr. Commun. Jpn., 101, 45 (2018);https://doi.org/10.1002/ecj.12043
- S. Azizighannad and S. Mitra, Sci. Rep., 8, 10083 (2018);https://doi.org/10.1038/s41598-018-28353-6
- T. Tubthong, A. Wisitsoraat, C. Tansarawiput, P. Opaprakasit and P. Sreearunothai, Development of Ammonia Gas Sensor Based on Ni-Doped Reduce Graphene Oxide, Proceedings of the 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018), 4-7 July 2018, Phuket, Thailand, pp. 760-763 (2018).
- S.Sadhukhan, A. Bhattacharyya, D. Rana, T.K. Ghosh, J.T. Orasugh, S. Khatua, K. Acharya and D. Chattopadhyaya, Mater. Chem. Phys., 247, 122906 (2020);https://doi.org/10.1016/j.matchemphys.2020.122906
- H. Ren, C. Gu, S.W. Joo, J. Zhao, Y. Sun and J. Huang, Sens. Actuators B, 266, 506 (2018);https://doi.org/10.1016/j.snb.2018.03.130
- M. Zannotti, E. Benazzi, L.A. Stevens, M. Minicucci, L. Bruce, C.E. Snape, E.A. Gibson and R. Giovannetti, ACS Appl. Energy Mater., 2, 7345 (2019);https://doi.org/10.1021/acsaem.9b01323
- S.P. Deshmukh, D.P. Kale, S. Kar, S.R. Shirsath, B.A. Bhanvase, V.K. Saharan and S.H. Sonawane, Nano-Struct. Nano-Objects, 21, 100407 (2020);https://doi.org/10.1016/j.nanoso.2019.100407
- X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov and S.A. Akbar, Sens. Actuators B, 230, 330 (2016);https://doi.org/10.1016/j.snb.2016.02.069
- G.S. Han, Y.H. Song, Y.U. Jin, J.-W. Lee, N.-G. Park, B.K. Kang, J.-K. Lee, I.S. Cho, D.H. Yoon and H.S. Jung, ACS Appl. Mater. Interfaces, 7, 23521 (2015);https://doi.org/10.1021/acsami.5b06171
- S. Xu, F. Sun, S. Yang, Z. Pan, J. Long and F. Gu, Sci. Rep., 5, 8939 (2015);https://doi.org/10.1038/srep08939
- S. Yao, S. Zhou, J. Wang, W. Li and Z. Li, Photochem. Photobiol. Sci., 18, 2989 (2019);https://doi.org/10.1039/C9PP00242A
- R. Liu, R. Qiu, T. Zou, C. Liu, J. Chen, Q. Dai, S. Zhang and H. Zhou, Nanotechnology, 30, 075202 (2018);https://doi.org/10.1088/1361-6528/aaf2ad
- S. Kumar, R.D. Kaushik, G.K. Upadhyay and L.P. Purohit, J. Hazard. Mater., 124300 (2020);https://doi.org/10.1016/j.jhazmat.2020.124300
- V. Galstyan, E. Comini, I. Kholmanov, G. Faglia and G. Sberveglieri, RSC Adv., 6, 34225 (2016);https://doi.org/10.1039/C6RA01913G
- Z. Zhan, L. Zheng, Y. Pan, G. Sun and L. Li, J. Mater. Chem., 22, 2589 (2012);https://doi.org/10.1039/C1JM13920G
- T. Lv, Z. Xu, W. Hong, G. Li, Y. Li and L. Jia, Chem. Eng. J., 382, 123021 (2020);https://doi.org/10.1016/j.cej.2019.123021
- N. Karikalan, M. Velmurugan, S.-M. Chen and C. Karuppiah, ACS Appl. Mater. Interfaces, 8, 22545 (2016);https://doi.org/10.1021/acsami.6b07260
- C. Zhang, Q. Chen and H. Zhan, ACS Appl. Mater. Interfaces, 8, 22977 (2016);https://doi.org/10.1021/acsami.6b05255
- P.E. Lokhande and U.S. Chavan, Mater. Sci. Energy Technol., 2, 52 (2019);https://doi.org/10.1016/j.mset.2018.10.003
- Y. Zou and Y. Wang, Nanoscale, 3, 2615 (2011);https://doi.org/10.1039/C1NR10070J
- S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang and Z. Lin, Adv. Energy Mater., 5, 1500400 (2015);https://doi.org/10.1002/aenm.201500400
- F. Gao, Q. Wei, J. Yang, H. Bi and M. Wang, Ionics, 19, 1883 (2013);https://doi.org/10.1007/s11581-013-0939-5
- F. Basharat, U.A. Rana, M. Shahid and M. Serwar, RSC Adv., 5, 86713 (2015);https://doi.org/10.1039/C5RA17041A
- S. Min, C. Zhao, Z. Zhang, G. Chen, X. Qian and Z. Guo, J. Mater. Chem. A, 3, 3641 (2015);https://doi.org/10.1039/C4TA06233G
- N. Parveen, S.A. Ansari, S.G. Ansari, H. Fouad and M.H. Cho, New J. Chem., 41, 10467 (2017);https://doi.org/10.1039/C7NJ01915G
- W. Ni, B. Wang, J. Cheng, X. Li, Q. Guan, G. Gu and L. Huang, Nanoscale, 6, 2618 (2014);https://doi.org/10.1039/C3NR06031D
- A.Al-Nafieya, A. Kumar, M. Kumar, A. Addad, B. Sieber, S. Szunerits, R. Boukherroub and S.L. Jain, J. Photochem. Photobiol. A, 336, 198 (2017);https://doi.org/10.1016/j.jphotochem.2016.12.023
- D.L. Fang, Z.D. Chen, X. Liu, Z.F. Wu and C.H. Zheng, Electrochim. Acta, 81, 321 (2012); https://doi.org/10.1016/j.electacta.2012.07.047
- A. Shanmugasundaram, N.D. Chinh, Y.-J. Jeong, T.F. Hou, D.-S. Kim, D. Kim, Y.-B. Kim and D.-W. Lee, J. Mater. Chem. A, 7, 9263 (2019);https://doi.org/10.1039/C9TA00755E
- C.A. Zito, T.M. Perfecto, C.S. Fonseca and D.P. Volanti, New J. Chem., 42, 8638 (2018);https://doi.org/10.1039/C8NJ01061G
- R.M. Chellab and K.H. Harbbi, AIP Conf. Proc., 2123, 020044 (2019);https://doi.org/10.1063/1.5116971
- P. Ahuja, S.K. Ujjain, I. Arora and M. Samim, ACS Omega, 3, 7846 (2018);https://doi.org/10.1021/acsomega.8b00765
- N.D.M. Ridzuan, M.S. Shaharun, K.M. Lee, I.U. Din and P. Puspitasari, Catalysts, 10, 471 (2020);https://doi.org/10.3390/catal10050471
- A. Roychoudhury, A. Prateek, S. Basu and S.K. Jha, J. Nanopart. Res., 20, 70 (2018);https://doi.org/10.1007/s11051-018-4173-y
- F.A.A. Al-Rub, M.M. Fares and A.R. Mohammad, RSC Adv., 10, 37050 (2020);https://doi.org/10.1039/D0RA05530A
- Z. Jurasz, K. Adamaszek, R. Janik, Z. Grzesik and S. Mrowec, Defect and Diffusion Forum, 289-292, 775 (2009);https://doi.org/10.4028/www.scientific.net/DDF.289-292.775
- L.A. García-Cerda, K.M. Bernal-Ramos, S.M. Montemayor, M.A. Quevedo-López, R. Betancourt-Galindo and D. Bueno-Báques, J. Nanomater., 2011, 162495 (2011);https://doi.org/10.1155/2011/162495
- S.P. Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim and N.M. Huang, RSC Adv., 5, 14010 (2015);https://doi.org/10.1039/C4RA16776G
- A.A. Barzinjy, S.M. Hamad, S. Aydin, M.H. Ahmed and F.H.S. Hussain, J. Mater. Sci.: Mater. Electron., 31, 11303 (2020);https://doi.org/10.1007/s10854-020-03679-y
- G. Vinodhkumar, J. Wilson, S. Mahalakshmi, V. Ragavendran and A.C. Peter, Mater. Today Proc., (2019); https://doi.org/10.1016/j.matpr.2019.06.004
- P. Khandagale and D. Shinde, Int. J. Adv. Res., 5, 1333 (2017);https://doi.org/10.21474/IJAR01/4253
- E. Nouri, M.R. Mohammadi and P. Lianos, ACS Omega, 3, 46 (2018);https://doi.org/10.1021/acsomega.7b01775
- J. Gui, J. Zhang, T. Liu, Y. Peng and J. Chang, New J. Chem., 41, 10695 (2017);https://doi.org/10.1039/C7NJ02267K
- H. Zhang, X. Tian, C. Wang, H. Luo, J. Hu, Y. Shen and A. Xie, Appl. Surf. Sci., 314, 228 (2014);https://doi.org/10.1016/j.apsusc.2014.06.172
- Y. Liu, C. Gao, Q. Li and H. Pang, Chem. Eur. J., 25, 2141 (2019);https://doi.org/10.1002/chem.201803982
- F. Motahari, M.R. Mozdianfard, F. Soofivand and M. Salavati-Niasari, RSC Adv., 4, 27654 (2014);https://doi.org/10.1039/C4RA02697G
- R. Dewangan, A. Hashmi, A. Asthana, A.K. Singh and M.A.B. Hasan Susan (2020);https://doi.org/10.1080/03067319.2020.1802443
- N.M. Julkapli, S. Bagheri and S.B.A. Hamid, The Scient. World J., 2014, 692307 (2014);https://doi.org/10.1155/2014/692307
- Z. Yan, X. Yu, A. Han, P. Xu and P. Du, J. Phys. Chem. C, 118, 22896 (2014);https://doi.org/10.1021/jp5065402
References
M.-H. Li, J.-H. Yum, S.-J. Moon and P. Chen, Energies, 9, 331 (2016);https://doi.org/10.3390/en9050331
B. Tong and M. Ichimura, Electr. Commun. Jpn., 101, 45 (2018);https://doi.org/10.1002/ecj.12043
S. Azizighannad and S. Mitra, Sci. Rep., 8, 10083 (2018);https://doi.org/10.1038/s41598-018-28353-6
T. Tubthong, A. Wisitsoraat, C. Tansarawiput, P. Opaprakasit and P. Sreearunothai, Development of Ammonia Gas Sensor Based on Ni-Doped Reduce Graphene Oxide, Proceedings of the 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018), 4-7 July 2018, Phuket, Thailand, pp. 760-763 (2018).
S.Sadhukhan, A. Bhattacharyya, D. Rana, T.K. Ghosh, J.T. Orasugh, S. Khatua, K. Acharya and D. Chattopadhyaya, Mater. Chem. Phys., 247, 122906 (2020);https://doi.org/10.1016/j.matchemphys.2020.122906
H. Ren, C. Gu, S.W. Joo, J. Zhao, Y. Sun and J. Huang, Sens. Actuators B, 266, 506 (2018);https://doi.org/10.1016/j.snb.2018.03.130
M. Zannotti, E. Benazzi, L.A. Stevens, M. Minicucci, L. Bruce, C.E. Snape, E.A. Gibson and R. Giovannetti, ACS Appl. Energy Mater., 2, 7345 (2019);https://doi.org/10.1021/acsaem.9b01323
S.P. Deshmukh, D.P. Kale, S. Kar, S.R. Shirsath, B.A. Bhanvase, V.K. Saharan and S.H. Sonawane, Nano-Struct. Nano-Objects, 21, 100407 (2020);https://doi.org/10.1016/j.nanoso.2019.100407
X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov and S.A. Akbar, Sens. Actuators B, 230, 330 (2016);https://doi.org/10.1016/j.snb.2016.02.069
G.S. Han, Y.H. Song, Y.U. Jin, J.-W. Lee, N.-G. Park, B.K. Kang, J.-K. Lee, I.S. Cho, D.H. Yoon and H.S. Jung, ACS Appl. Mater. Interfaces, 7, 23521 (2015);https://doi.org/10.1021/acsami.5b06171
S. Xu, F. Sun, S. Yang, Z. Pan, J. Long and F. Gu, Sci. Rep., 5, 8939 (2015);https://doi.org/10.1038/srep08939
S. Yao, S. Zhou, J. Wang, W. Li and Z. Li, Photochem. Photobiol. Sci., 18, 2989 (2019);https://doi.org/10.1039/C9PP00242A
R. Liu, R. Qiu, T. Zou, C. Liu, J. Chen, Q. Dai, S. Zhang and H. Zhou, Nanotechnology, 30, 075202 (2018);https://doi.org/10.1088/1361-6528/aaf2ad
S. Kumar, R.D. Kaushik, G.K. Upadhyay and L.P. Purohit, J. Hazard. Mater., 124300 (2020);https://doi.org/10.1016/j.jhazmat.2020.124300
V. Galstyan, E. Comini, I. Kholmanov, G. Faglia and G. Sberveglieri, RSC Adv., 6, 34225 (2016);https://doi.org/10.1039/C6RA01913G
Z. Zhan, L. Zheng, Y. Pan, G. Sun and L. Li, J. Mater. Chem., 22, 2589 (2012);https://doi.org/10.1039/C1JM13920G
T. Lv, Z. Xu, W. Hong, G. Li, Y. Li and L. Jia, Chem. Eng. J., 382, 123021 (2020);https://doi.org/10.1016/j.cej.2019.123021
N. Karikalan, M. Velmurugan, S.-M. Chen and C. Karuppiah, ACS Appl. Mater. Interfaces, 8, 22545 (2016);https://doi.org/10.1021/acsami.6b07260
C. Zhang, Q. Chen and H. Zhan, ACS Appl. Mater. Interfaces, 8, 22977 (2016);https://doi.org/10.1021/acsami.6b05255
P.E. Lokhande and U.S. Chavan, Mater. Sci. Energy Technol., 2, 52 (2019);https://doi.org/10.1016/j.mset.2018.10.003
Y. Zou and Y. Wang, Nanoscale, 3, 2615 (2011);https://doi.org/10.1039/C1NR10070J
S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang and Z. Lin, Adv. Energy Mater., 5, 1500400 (2015);https://doi.org/10.1002/aenm.201500400
F. Gao, Q. Wei, J. Yang, H. Bi and M. Wang, Ionics, 19, 1883 (2013);https://doi.org/10.1007/s11581-013-0939-5
F. Basharat, U.A. Rana, M. Shahid and M. Serwar, RSC Adv., 5, 86713 (2015);https://doi.org/10.1039/C5RA17041A
S. Min, C. Zhao, Z. Zhang, G. Chen, X. Qian and Z. Guo, J. Mater. Chem. A, 3, 3641 (2015);https://doi.org/10.1039/C4TA06233G
N. Parveen, S.A. Ansari, S.G. Ansari, H. Fouad and M.H. Cho, New J. Chem., 41, 10467 (2017);https://doi.org/10.1039/C7NJ01915G
W. Ni, B. Wang, J. Cheng, X. Li, Q. Guan, G. Gu and L. Huang, Nanoscale, 6, 2618 (2014);https://doi.org/10.1039/C3NR06031D
A.Al-Nafieya, A. Kumar, M. Kumar, A. Addad, B. Sieber, S. Szunerits, R. Boukherroub and S.L. Jain, J. Photochem. Photobiol. A, 336, 198 (2017);https://doi.org/10.1016/j.jphotochem.2016.12.023
D.L. Fang, Z.D. Chen, X. Liu, Z.F. Wu and C.H. Zheng, Electrochim. Acta, 81, 321 (2012); https://doi.org/10.1016/j.electacta.2012.07.047
A. Shanmugasundaram, N.D. Chinh, Y.-J. Jeong, T.F. Hou, D.-S. Kim, D. Kim, Y.-B. Kim and D.-W. Lee, J. Mater. Chem. A, 7, 9263 (2019);https://doi.org/10.1039/C9TA00755E
C.A. Zito, T.M. Perfecto, C.S. Fonseca and D.P. Volanti, New J. Chem., 42, 8638 (2018);https://doi.org/10.1039/C8NJ01061G
R.M. Chellab and K.H. Harbbi, AIP Conf. Proc., 2123, 020044 (2019);https://doi.org/10.1063/1.5116971
P. Ahuja, S.K. Ujjain, I. Arora and M. Samim, ACS Omega, 3, 7846 (2018);https://doi.org/10.1021/acsomega.8b00765
N.D.M. Ridzuan, M.S. Shaharun, K.M. Lee, I.U. Din and P. Puspitasari, Catalysts, 10, 471 (2020);https://doi.org/10.3390/catal10050471
A. Roychoudhury, A. Prateek, S. Basu and S.K. Jha, J. Nanopart. Res., 20, 70 (2018);https://doi.org/10.1007/s11051-018-4173-y
F.A.A. Al-Rub, M.M. Fares and A.R. Mohammad, RSC Adv., 10, 37050 (2020);https://doi.org/10.1039/D0RA05530A
Z. Jurasz, K. Adamaszek, R. Janik, Z. Grzesik and S. Mrowec, Defect and Diffusion Forum, 289-292, 775 (2009);https://doi.org/10.4028/www.scientific.net/DDF.289-292.775
L.A. García-Cerda, K.M. Bernal-Ramos, S.M. Montemayor, M.A. Quevedo-López, R. Betancourt-Galindo and D. Bueno-Báques, J. Nanomater., 2011, 162495 (2011);https://doi.org/10.1155/2011/162495
S.P. Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim and N.M. Huang, RSC Adv., 5, 14010 (2015);https://doi.org/10.1039/C4RA16776G
A.A. Barzinjy, S.M. Hamad, S. Aydin, M.H. Ahmed and F.H.S. Hussain, J. Mater. Sci.: Mater. Electron., 31, 11303 (2020);https://doi.org/10.1007/s10854-020-03679-y
G. Vinodhkumar, J. Wilson, S. Mahalakshmi, V. Ragavendran and A.C. Peter, Mater. Today Proc., (2019); https://doi.org/10.1016/j.matpr.2019.06.004
P. Khandagale and D. Shinde, Int. J. Adv. Res., 5, 1333 (2017);https://doi.org/10.21474/IJAR01/4253
E. Nouri, M.R. Mohammadi and P. Lianos, ACS Omega, 3, 46 (2018);https://doi.org/10.1021/acsomega.7b01775
J. Gui, J. Zhang, T. Liu, Y. Peng and J. Chang, New J. Chem., 41, 10695 (2017);https://doi.org/10.1039/C7NJ02267K
H. Zhang, X. Tian, C. Wang, H. Luo, J. Hu, Y. Shen and A. Xie, Appl. Surf. Sci., 314, 228 (2014);https://doi.org/10.1016/j.apsusc.2014.06.172
Y. Liu, C. Gao, Q. Li and H. Pang, Chem. Eur. J., 25, 2141 (2019);https://doi.org/10.1002/chem.201803982
F. Motahari, M.R. Mozdianfard, F. Soofivand and M. Salavati-Niasari, RSC Adv., 4, 27654 (2014);https://doi.org/10.1039/C4RA02697G
R. Dewangan, A. Hashmi, A. Asthana, A.K. Singh and M.A.B. Hasan Susan (2020);https://doi.org/10.1080/03067319.2020.1802443
N.M. Julkapli, S. Bagheri and S.B.A. Hamid, The Scient. World J., 2014, 692307 (2014);https://doi.org/10.1155/2014/692307
Z. Yan, X. Yu, A. Han, P. Xu and P. Du, J. Phys. Chem. C, 118, 22896 (2014);https://doi.org/10.1021/jp5065402