Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Bioremediation of Pollutants and Sustainable Energy Production through Bacterial Activities in Microbial Fuel Cells: An Overview
Corresponding Author(s) : Amira Suriaty Yaakop
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
Electrical energy generation can be achieved in microbial fuel cells (MFCs) through the catalytic action of microorganisms which can oxidize organic matter and convert it into a biofilm. In MFCs, the exoelectrogens play a crucial role. MFCs is eco-friendly promising technology that produces electricity from various organic substrates. It is a novel and environmentally friendly approach for bioremediation and sustainable electricity production. The fact that heavy metals contributing adversely to the environmental pollution thus the microbial fuel cell technology has a solution for this as well, performing the removal and recovery of heavy metals by using both single and double-chambered MFCs. Many studies show that the new strains of microbes can produce power densities individually as high as strains from mixed communities. However, the implementation of this technology is just limited to the laboratory scale because of a few challenges like low efficiencies, low production rates. This review article focuses an introduction about the role and mechanism of different microorganisms towards energy production, biofilm formation, high power producing microbes inside the microorganisms, the electron transfer mechanism to the electrodes and vice-versa and the removal of heavy metals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.A. Yaqoob, A. Khatoon, S.H. Mohd Setapar, K. Umar, T. Parveen, M.N. Mohamad Ibrahim, A. Ahmad and M. Rafatullah, Catalysts, 10, 819 (2020);https://doi.org/10.3390/catal10080819
- A.A. Yaqoob, M.N.M. Ibrahim and S. Rodríguez-Couto, Biochem. Eng. J., 164, 107779 (2020);https://doi.org/10.1016/j.bej.2020.107779
- E.D. Brutinel and J.A. Gralnick, Appl. Microbiol. Biotechnol., 93, 41 (2012);https://doi.org/10.1007/s00253-011-3653-0
- R. Orellana, J.J. Leavitt, L.R. Comolli, R. Csencsits, N. Janot, K.A. Flanagan, A.S. Gray, C. Leang, M. Izallalen, T. Mester and D.R. Lovley, Appl. Environ. Microbiol., 79, 6369 (2013);https://doi.org/10.1128/AEM.02551-13
- N.S. Malvankar and D.R. Lovley, ChemSusChem, 5, 1039 (2012);https://doi.org/10.1002/cssc.201100733
- L. Huang, X. Chai, X. Quan, B.E. Logan and G. Chen, Bioresour. Technol., 111, 167 (2012);https://doi.org/10.1016/j.biortech.2012.01.171
- A.J. Slate, K.A. Whitehead, D.A. Brownson and C.E. Banks, Renew. Sustain. Energy Rev., 101, 60 (2019);https://doi.org/10.1016/j.rser.2018.09.044
- A. Azimi, A. Azari, M. Rezakazemi and M. Ansarpour, ChemBioEng. Rev., 4, 37 (2017);https://doi.org/10.1002/cben.201600010
- M.K. Uddin, Chem. Eng. J., 308, 438 (2017);https://doi.org/10.1016/j.cej.2016.09.029
- H.I. Abdel-Shafy and M.S. Mansour, Egypt. J. Petrol., 25, 107 (2016);https://doi.org/10.1016/j.ejpe.2015.03.011
- S. Alzahrani and A.W. Mohammad, J. Water Process Eng., 4, 107 (2014);https://doi.org/10.1016/j.jwpe.2014.09.007
- N.H.H. Hairom, A.W. Mohammad, L.Y. Ng and A.A.H. Kadhum, Desalination Water Treat., 54, 944 (2015);https://doi.org/10.1080/19443994.2014.917988
- Z.A.A. Aziz, H. Mohd-Nasir, A. Ahmad, S.H. Mohd. Setapar, W.L. Peng, S.C. Chuo, A. Khatoon, K. Umar, A.A. Yaqoob and M.N.M. Ibrahim, Front Chem., 7, 739 (2019);https://doi.org/10.3389/fchem.2019.00739
- F. Moradi, V. Maleki, S. SalehGhadimi, F. Kooshki and B.P. Gargari, Clin. Exp. Pharmacol. Physiol., 46, 975 (2019);https://doi.org/10.1111/1440-1681.13144
- G. Genchi, M. Sinicropi, A. Carocci, G. Lauria and A. Catalano, Int. J. Environ. Res. Public Health, 14, 761 (2017);https://doi.org/10.3390/ijerph14070761
- A. Saghazadeh and N. Rezaei, Prog. Neuropsychopharmacol. Biol. Psychiatry, 79, 340 (2017);https://doi.org/10.1016/j.pnpbp.2017.07.011
- A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M. Ismail, H.A. Qari, K. Umar and M.N.M. Ibrahim, Front Chem., 8, 341 (2020);https://doi.org/10.3389/fchem.2020.00341
- T.R. Rajeswari and N. Sailaja, J. Chem. Pharm. Sci., 3, 175 (2014).
- A.A. Yaqoob, M.N. Mohamad Ibrahim, M. Rafatullah, Y.S. Chua, A. Ahmad and K. Umar, Materials, 13, 2078 (2020);https://doi.org/10.3390/ma13092078
- A.A. Yaqoob and M.N.M. Ibrahim, Int. Res. J. Eng. Technol., 6, 1 (2019).
- A.A. Yaqoob, N.H.M. Noor, A. Serrà and M.N.M. Ibrahim, Nanomaterials, 10, 932 (2020);https://doi.org/10.3390/nano10050932
- Y. Lu, L. Zhao and B. Wang, Electron. Commerce Res. Appl., 9, 346 (2010);https://doi.org/10.1016/j.elerap.2009.07.003
- D. Ucar, Y. Zhang and I. Angelidaki, Front. Microbiol., 8, 643 (2017);https://doi.org/10.3389/fmicb.2017.00643
- Y.V. Nancharaiah, S. Venkata Mohan and P.N.L. Lens, Bioresour. Technol., 215, 173 (2016);https://doi.org/10.1016/j.biortech.2016.03.129
- H. Wang and Z.J. Ren, Water Res., 66, 219 (2014);https://doi.org/10.1016/j.watres.2014.08.013
- N. Loman, C. Constantinidou, J. Chan, M. Halachev, M. Sergeant, C. Penn, E. Robinson and M. Pallen, Nat. Rev. Microbiol., 10, 599 (2012);https://doi.org/10.1038/nrmicro2850
- R. Kumar, L. Singh and A. Zularisam, Renew. Sustain. Energy Rev., 56, 1322 (2016);https://doi.org/10.1016/j.rser.2015.12.029
- Y. Cao, H. Mu, W. Liu, R. Zhang, J. Guo, M. Xian and H. Liu, Microb. Cell Fact., 18, 39 (2019);https://doi.org/10.1186/s12934-019-1087-z
- B.E. Logan, Nat. Rev. Microbiol., 7, 375 (2009);https://doi.org/10.1038/nrmicro2113
- A.E. Franks, K.P. Nevin, H. Jia, M. Izallalen, T.L. Woodard and D.R. Lovley, Energy Environ. Sci., 2, 113 (2009);https://doi.org/10.1039/B816445B
- S. Kalathil and D. Pant, RSC Adv., 6, 30582 (2016);https://doi.org/10.1039/C6RA04734C
- L. Ezziat, A. Elabed, S. Ibnsouda and S. El Abed, Front. Energy Res., 7, 1 (2019);https://doi.org/10.3389/fenrg.2019.00001
- K.B. Gregory, D.R. Bond and D.R. Lovley, Environ. Microbiol., 6, 596 (2004);https://doi.org/10.1111/j.1462-2920.2004.00593.x
- J.C. Thrash and J.D. Coates, Environ. Sci. Technol., 42, 3921 (2008);https://doi.org/10.1021/es702668w
- A.A. Yaqoob, M.N.M. Ibrahim, A.S. Yaakop, K. Umar and A. Ahmad, Chem Eng J., 128052 (2020);https://doi.org/10.1016/j.cej.2020.128052
- N. Xafenias, Y. Zhang and C.J. Banks, Environ. Sci. Technol., 47, 4512 (2013);https://doi.org/10.1021/es304606u
- I. Gurung, I. Spielman, M.R. Davies, R. Lala, P. Gaustad, N. Biais and V. Pelicic, Mol. Microbiol., 99, 380 (2016);https://doi.org/10.1111/mmi.13237
- S. Carbajosa, M. Malki, R. Caillard, M.F. Lopez, F.J. Palomares, J.A. Martín-Gago, N. Rodríguez, R. Amils, V.M. Fernández and A.L. De Lacey, Biosens. Bioelectron., 26, 877 (2010);https://doi.org/10.1016/j.bios.2010.07.037
- M. Breuer, K.M. Rosso, J. Blumberger and J.N. Butt, J. R. Soc. Interface, 12, 20141117 (2015);https://doi.org/10.1098/rsif.2014.1117
- S.M. Strycharz, R.H. Glaven, M.V. Coppi, S.M. Gannon, L.A. Perpetua, A. Liu, K.P. Nevin and D.R. Lovley, Bioelectrochemistry, 80, 142 (2011);https://doi.org/10.1016/j.bioelechem.2010.07.005
- P.M. Shrestha and A.E. Rotaru, Front. Microbiol., 5, 237 (2014);https://doi.org/10.3389/fmicb.2014.00237
- Y. Guan, Y. Gong, W. Li, J. Gelb, L. Zhang, G. Liu, X. Zhang, X. Song, C. Xia, Y. Xiong, H. Wang, Z. Wu and Y. Tian, J. Power Sources, 196, 10601 (2011);https://doi.org/10.1016/j.jpowsour.2011.08.083
- F. Zhao, R.C. Slade and J.R. Varcoe, Chem. Soc. Rev., 38, 1926 (2009);https://doi.org/10.1039/b819866g
- S.A. Patil, C. Hägerhäll and L. Gorton, Bioanal. Rev., 4, 159 (2012);https://doi.org/10.1007/s12566-012-0033-x
- X. Jiang, J. Hu, L.A. Fitzgerald, J.C. Biffinger, P. Xie, B.R. Ringeisen and C.M. Lieber, Proc. Natl. Acad., 107, 16806 (2010);https://doi.org/10.1073/pnas.1011699107
- G. Pankratova, L. Hederstedt and L. Gorton, Anal. Chim. Acta, 1076, 32 (2019);https://doi.org/10.1016/j.aca.2019.05.007
- S. Pirbadian, M.S. Chavez and M.Y. El-Naggar, Proc. Natl. Acad., 117, 20171 (2020);https://doi.org/10.1073/pnas.2000802117
- H. Peng, Y. Ouyang, M. Bilal, W. Wang, H. Hu and X. Zhang, Microb. Cell Fact., 17, 9 (2018);https://doi.org/10.1186/s12934-017-0854-y
- M. Bilal, S. Wang, H.M. Iqbal, Y. Zhao, H. Hu, W. Wang and X. Zhang, Appl. Microbiol. Biotechnol., 102, 7759 (2018);https://doi.org/10.1007/s00253-018-9222-z
- Evelyn, Y. Li, A. Marshall and P.A. Gostomski, Rev. Environ. Sci. Biotechnol., 13, 35 (2014);https://doi.org/10.1007/s11157-013-9322-2
- S.H. Sekeri, M.N.M. Ibrahim, K. Umar, A.A. Yaqoob, M.N. Azmi, M.H. Hussin, M.B.H. Othman and M.F.I.A. Malik, Int. J. Biol. Macromol., 164, 3114 (2020);https://doi.org/10.1016/j.ijbiomac.2020.08.181
- W. Liu, H. Yuan, J. Yang and B. Li, Bioresour. Technol., 100, 2629 (2009);https://doi.org/10.1016/j.biortech.2008.12.017
- E. Zhang, Y. Cai, Y. Luo and Z. Piao, Can. J. Microbiol., 60, 753 (2014);https://doi.org/10.1139/cjm-2014-0389
- P. Parameswaran, T. Bry, S.C. Popat, B.C. Lusk, B.E. Rittmann and C.I. Torres, Environ. Sci. Technol., 47, 4934 (2013);https://doi.org/10.1021/es400321c
- K. Wrighton, J. Thrash, R. Melnyk, J. Bigi, K. Byrne-Bailey, J. Remis, D. Schichnes, M. Auer, C. Chang and J. Coates, Appl. Environ. Microbiol., 77, 7633 (2011);https://doi.org/10.1128/AEM.05365-11
- O. Obata, M.J. Salar-Garcia, J. Greenman, H. Kurt, K. Chandran and I. Ieropoulos, J. Environ. Manage., 258, 109992 (2020);https://doi.org/10.1016/j.jenvman.2019.109992
- S.R. Babu Arulmani, H.L. Ganamuthu, V. Ashokkumar, G. Govindarajan, S. Kandasamy and H. Zhang, Environ. Technol. Innov., 20, 101145 (2020);https://doi.org/10.1016/j.eti.2020.101145
- J.H. Merritt, D.-G. Ha, K.N. Cowles, W. Lu, D.K. Morales, J. Rabinowitz, Z. Gitai and G.A. O’Toole, MBio, 1, e00183-10 (2010);https://doi.org/10.1128/mBio.00183-10
- J.G. Malone, T. Jaeger, P. Manfredi, A. Dötsch, A. Blanka, R. Bos, G.R. Cornelis, S. Häussler and U. Jenal, PLoS Pathog., 8, e1002760 (2012);https://doi.org/10.1371/journal.ppat.1002760
- S.i. Ishii, K. Watanabe, S. Yabuki, B.E. Logan and Y. Sekiguchi, Appl. Environ. Microbiol., 74, 7348 (2008);https://doi.org/10.1128/AEM.01639-08
- K. Solanki, S. Subramanian and S. Basu, Bioresour. Technol., 131, 564 (2013);https://doi.org/10.1016/j.biortech.2012.12.063
- M.N.I. Siddique and Z.A. Wahid, J. Clean. Prod., 194, 359 (2018);https://doi.org/10.1016/j.jclepro.2018.05.155
- A. Adebule, B. Aderiye and A. Adebayo, Ann. Appl. Microbiol. Biotechnol. J., 2, 1008 (2018).
- S.C. Chuo, S.F. Mohamed, S.H. Mohd Setapar, A. Ahmad, M. Jawaid, W.A. Wani, A.A. Yaqoob and M.N. Mohamad Ibrahim, Materials, 13, 4993 (2020);https://doi.org/10.3390/ma13214993
- B.E. Logan, Environ. Sci. Technol., 38, 160A (2004);https://doi.org/10.1021/es040468s
- L.-P. Fan and S. Xue, Open Biotechnol. J., 10, 398 (2016);https://doi.org/10.2174/1874070701610010398
- J. Liu, Y. Yong, H. Song and C.M. Li, ACS Catal., 2, 1749 (2012);https://doi.org/10.1021/cs3003808
- A. Fraiwan, H. Lee and S. Choi, IEEE Sens. J., 14, 3385 (2014);https://doi.org/10.1109/JSEN.2014.2332075
- A.V. Samrot, P. Senthilkumar, K. Pavankumar, G. Akilandeswari, N. Rajalakshmi and K. Dhathathreyan, Int. J. Hydrogen Energ., 35, 7723 (2010);https://doi.org/10.1016/j.ijhydene.2010.05.047
- L. Singh, M.F. Siddiqui, A. Ahmad, M.H.A. Rahim, M. Sakinah and Z.A. Wahid, J. Ind. Eng. Chem., 19, 659 (2013);https://doi.org/10.1016/j.jiec.2012.10.001
- P. Bolat and C. Thiel, Int. J. Hydrogen Energy, 39, 8898 (2014);https://doi.org/10.1016/j.ijhydene.2014.03.170
- L. Huang, X. Chai, G. Chen and B.E. Logan, Environ. Sci. Technol., 45, 5025 (2011);https://doi.org/10.1021/es103875d
- H. Richter, K. McCarthy, K.P. Nevin, J.P. Johnson, V.M. Rotello and D.R. Lovley, Langmuir, 24, 4376 (2008);https://doi.org/10.1021/la703469y
- W.P. Hamilton, M. Kim and E.L. Thackston, Water Res., 39, 4869 (2005);https://doi.org/10.1016/j.watres.2005.02.006
- L. Xiao and Z. He, Renew. Sustain. Energy Rev., 37, 550 (2014);https://doi.org/10.1016/j.rser.2014.05.066
- S. Pandit, S. Khilari, S. Roy, D. Pradhan and D. Das, Bioresour. Technol., 166, 451 (2014);https://doi.org/10.1016/j.biortech.2014.05.075
- D. Xing, Y. Zuo, S. Cheng, J.M. Regan and B.E. Logan, Environ. Sci. Technol., 42, 4146 (2008);https://doi.org/10.1021/es800312v
- Y. Qiao, C.M. Li, S.-J. Bao, Z. Lu and Y. Hong, Chem. Commun., 1290 (2008);https://doi.org/10.1039/B719955D
- S.V. Raghavulu, R.K. Goud, P. Sarma and S.V. Mohan, Bioresour. Technol., 102, 2751 (2011);https://doi.org/10.1016/j.biortech.2010.11.048
- D. Prasad, S. Arun, M. Murugesan, S. Padmanaban, R. Satyanarayanan, S. Berchmans and V. Yegnaraman, Biosens. Bioelectron., 22, 2604 (2007);https://doi.org/10.1016/j.bios.2006.10.028
- D. Sun, A. Wang, S. Cheng, M. Yates and B.E. Logan, Int. J. Syst. Evol. Microbiol., 64, 3485 (2014);https://doi.org/10.1099/ijs.0.061598-0
- X. Li, G. -Z. Zhong, Y. Qiao, J. Huang, W.H. Hu, X.-G. Wang and C.M. Li, RSC Adv., 4, 39839 (2014);https://doi.org/10.1039/C4RA05077K
- A. Nandy, V. Kumar and P.P. Kundu, Enzyme Microb. Technol., 53, 339 (2013);https://doi.org/10.1016/j.enzmictec.2013.07.006
- Z.-i. Kimura, K.M. Chung, H. Itoh, A. Hiraishi and S. Okabe, Int. J. Syst. Evol. Microbiol., 64, 1384 (2014);https://doi.org/10.1099/ijs.0.058826-0
- Y. Cui, N. Rashid, N. Hu, M.S.U. Rehman and J.-I. Han, Energy Convers. Manage., 79, 674 (2014);https://doi.org/10.1016/j.enconman.2013.12.032
- A.E. Inglesby, D.A. Beatty and A.C. Fisher, RSC Adv., 2, 4829 (2012);https://doi.org/10.1039/c2ra20264f
- Y. Yuan, Q. Chen, S. Zhou, L. Zhuang and P. Hu, J. Hazard. Mater., 187, 591 (2011);https://doi.org/10.1016/j.jhazmat.2011.01.042
- C. Dumas, R. Basseguy and A. Bergel, Electrochim. Acta, 53, 5235 (2008);https://doi.org/10.1016/j.electacta.2008.02.056
- S. Freguia, S. Tsujimura and K. Kano, Electrochim. Acta, 55, 813 (2010);https://doi.org/10.1016/j.electacta.2009.09.027
- S.P. Ong, A. Jain, G. Hautier, B. Kang and G. Ceder, Electrochem. Commun., 12, 427 (2010);https://doi.org/10.1016/j.elecom.2010.01.010
- A. González del Campo, P. Cañizares, M.A. Rodrigo, F.J. Fernández and J. Lobato, J. Power Sources, 242, 638 (2013);https://doi.org/10.1016/j.jpowsour.2013.05.110
- A. Arvay, E. Yli-Rantala, C. Liu, X. Peng, P. Koski, L. Cindrella, P. Kauranen, P. Wilde and A.M. Kannan, J. Power Sources, 213, 317 (2012);https://doi.org/10.1016/j.jpowsour.2012.04.026
- A.A. Yaqoob, T. Parveen, K. Umar and M.N. Mohamad Ibrahim, Rev. Water., 12, 495 (2020); https://doi.org/10.3390/w12020495
- S. Gupta, A. Yadav and N. Verma, Chem. Eng. J., 307, 729 (2017);https://doi.org/10.1016/j.cej.2016.08.130
- C. Kim, C.R. Lee, Y.E. Song, J. Heo, S.M. Choi, D.-H. Lim, J. Cho, C. Park, M. Jang and J.R. Kim, Chem. Eng. J., 328, 703 (2017);https://doi.org/10.1016/j.cej.2017.07.077
- A.A. Yaqoob, M.N.M. Ibrahim, K. Umar, S.A. Bhawani, A. Khan, A.M. Asiri, M.R Khan, M. Azam, and A.M. AlAmmari, Polymer., 135-161 (2021);https://doi.org/10.3390/polym13010135
- Q. Wang, L. Huang, Y. Pan, X. Quan and G. Li Puma, J. Hazard. Mater., 321, 896 (2017);https://doi.org/10.1016/j.jhazmat.2016.10.011
- D.P. Hanak, M. Erans, S.A. Nabavi, M. Jeremias, L.M. Romeo and V. Manovic, Chem. Eng. J., 335, 763 (2018);https://doi.org/10.1016/j.cej.2017.11.022
- Y. Zheng, M. Ouyang, X. Han, L. Lu and J. Li, J. Power Sources, 377, 161 (2018);https://doi.org/10.1016/j.jpowsour.2017.11.094
- A. Kilicarslan, M. Saridede, S. Stopic and B. Friedrich, Proceedings of the 10th European Metallurgical Conference (EMC), pp. 1167-1172, Düsseldorf, Germany, June 24-26 (2019).
- I. Birloaga and F. Vegliò, J. Environ. Chem. Eng., 6, 2932 (2018);https://doi.org/10.1016/j.jece.2018.04.040
- T. Nawaz and S. Sengupta, Sep. Purif. Technol., 176, 145 (2017);https://doi.org/10.1016/j.seppur.2016.11.076
- A.A. Yaqoob, M.N.M. Ibrahim, A. Ahmad and A.V.B. Reddy, Toxico-logy and Environmental Application of Carbon Nanocomposite;In: Environmental Remediation through Carbon Based Nano Composites;Springer: Berlin/Heidelberg, Germany, pp. 1-18 (2021).
- A.A. Yaqoob, R.M.R. Khan and A. Saddique, Int. J. Res., 6, 762 (2019);https://doi.org/10.1088/1757-899X/263/3/032019
- A.A. Yaqoob, K. Umar and M.N.M. Ibrahim, Appl. Nanosci., 10, 1369 (2020);https://doi.org/10.1007/s13204-020-01318-w
- C. Liu, W. Shi, H. Li, Z. Lei, L. He and Z. Zhang, Bioresour. Technol., 155, 198 (2014);https://doi.org/10.1016/j.biortech.2013.12.041
- M. Ayotamuno, R. Kogbara, S. Ogaji and S. Probert, Appl. Energy, 83, 1258 (2006);https://doi.org/10.1016/j.apenergy.2006.01.004
- J.L.W. Lwalaba, G. Zvobgo, L. Fu, X. Zhang, T.M. Mwamba, N. Muhammad, R.P.M. Mundende and G. Zhang, Ecotoxicol. Environ. Saf., 139, 488 (2017);https://doi.org/10.1016/j.ecoenv.2017.02.019
- L. Huang, B. Yao, D. Wu and X. Quan, J. Power Sources, 259, 54 (2014);https://doi.org/10.1016/j.jpowsour.2014.02.061
- Y.V. Nancharaiah, S.V. Mohan and P.N.L. Lens, Bioresour. Technol., 195, 102 (2015);https://doi.org/10.1016/j.biortech.2015.06.058
- B. Zhang, C. Feng, J. Ni, J. Zhang and W. Huang, J. Power Sources, 204, 34 (2012);https://doi.org/10.1016/j.jpowsour.2012.01.013
- E.Y. Ryu, M. Kim and S.J. Lee, J. Microbiol. Biotechnol., 21, 187 (2011);https://doi.org/10.4014/jmb.1008.08019
- J.C. Varia, S.S. Martinez, S. Velasquez-Orta and S. Bull, Electrochim. Acta, 115, 344 (2014);https://doi.org/10.1016/j.electacta.2013.10.166
- L. Huang, J. Chen, X. Quan and F. Yang, Bioprocess Biosyst. Eng., 33, 937 (2010);https://doi.org/10.1007/s00449-010-0417-7
- C. Choi and Y. Cui, Bioresour. Technol., 107, 522 (2012);https://doi.org/10.1016/j.biortech.2011.12.058
- C. Jin, F. Li, C. Choi and B. Lim, Environ. Eng. Manag. J., 18, 235 (2019);https://doi.org/10.30638/eemj.2019.023
- Y. Jiang, A.C. Ulrich and Y. Liu, Bioresour. Technol., 139, 349 (2013);https://doi.org/10.1016/j.biortech.2013.04.050
- B.G. Zhang, S.G. Zhou, H.Z. Zhao, C.H. Shi, L.C. Kong, J.J. Sun, Y. Yang and J.R. Ni, Bioprocess Biosyst. Eng., 33, 187 (2010);https://doi.org/10.1007/s00449-009-0312-2
- Y. Li, A. Lu, H. Ding, S. Jin, Y. Yan, C. Wang, C. Zen and X. Wang, Electrochem. Commun., 11, 1496 (2009);https://doi.org/10.1016/j.elecom.2009.05.039
- C. Abourached, T. Catal and H. Liu, Water Res., 51, 228 (2014);https://doi.org/10.1016/j.watres.2013.10.062
- G. Wang, L. Huang and Y. Zhang, Biotechnol. Lett., 30, 1959 (2008);https://doi.org/10.1007/s10529-008-9792-4
- H.C. Tao, W. Li, M. Liang, N. Xu, J.R. Ni and W.M. Wu, Bioresour. Technol., 102, 4774 (2011);https://doi.org/10.1016/j.biortech.2011.01.057
- R. Qiu, B. Zhang, J. Li, Q. Lv, S. Wang and Q. Gu, J. Power Sources, 359, 379 (2017);https://doi.org/10.1016/j.jpowsour.2017.05.099
- Y.H. Wang, B.S. Wang, B. Pan, Q.Y. Chen and W. Yan, Appl. Energy, 112, 1337 (2013);https://doi.org/10.1016/j.apenergy.2013.01.012
- P. Singhvi and M. Chhabra, J. Bioremed. Biodeg., 4, 190 (2013);https://doi.org/10.4172/2155-6199.1000190
- C. Choi and N. Hu, Bioresour. Technol., 133, 589 (2013);https://doi.org/10.1016/j.biortech.2013.01.143
- T. Zhang, L. Hu, M. Zhang, M. Jiang, H. Fiedler, W. Bai, X. Wang, D. Zhang and Z. Li, Environ. Pollut., 252(Part B), 1399 (2019);https://doi.org/10.1016/j.envpol.2019.06.051
- M. Tandukar, U. Tezel and S.G. Pavlostathis, Proc. Water Environ. Fed., 2009, 527 (2009);https://doi.org/10.2175/193864709793955744
- F. Ya-li, W. Wei-da, T. Xin-hua, L. Hao-ran, D. Zhuwei, Y. Zhi-chao and D. Yun-long, RSC Adv., 4, 36458 (2014);https://doi.org/10.1039/C4RA04090B
- Y. Liu, P. Song, R. Gai, C. Yan, Y. Jiao, D. Yin, L. Cai and L. Zhang, J. Saudi Chem. Soc., 23, 338 (2019);https://doi.org/10.1016/j.jscs.2018.08.003
- H.C. Tao, M. Liang, W. Li, L. Zhang, J.R. Ni and W.M. Wu, J. Hazard. Mater., 189, 186 (2011);https://doi.org/10.1016/j.jhazmat.2011.02.018
- Z. Wang, B. Lim and C. Choi, Bioresour. Technol., 102, 6304 (2011);https://doi.org/10.1016/j.biortech.2011.02.027
- R. Gai, Y. Liu, J. Liu, C. Yan, Y. Jiao, L. Cai and L. Zhang, Int. J. Electrochem. Sci., 13, 3050 (2018);https://doi.org/10.20964/2018.03.69
- S.Z. Abbas, M. Rafatullah, N. Ismail and R.A. Nastro, Int. J. Energy Res., 2, 56 (2017);https://doi.org/10.1002/er.3804
- L. Huang, T. Li, C. Liu, X. Quan, L. Chen, A. Wang and G. Chen, Bioresour. Technol., 128, 539 (2013);https://doi.org/10.1016/j.biortech.2012.11.011
- Y. Wu, L. Wang, M. Jin, F. Kong, H. Qi and J. Nan, Bioresour. Technol., 283, 129 (2019);https://doi.org/10.1016/j.biortech.2019.03.080
- R. Kumar, L. Singh, A. Zularisam and F.I. Hai, Int. J. Energy Res., 42, 369 (2018);https://doi.org/10.1002/er.3780
- Z. Wang, B. Zhang, Y. Jiang, Y. Li and C. He, Appl. Energy, 209, 33 (2018);https://doi.org/10.1016/j.apenergy.2017.10.075
- L. Huang, P. Zhou, X. Quan and B.E. Logan, Bioelectrochemistry, 122, 61 (2018);https://doi.org/10.1016/j.bioelechem.2018.02.010
- N. Habibul, Y. Hu and G.P. Sheng, J. Hazard. Mater., 318, 9 (2016);https://doi.org/10.1016/j.jhazmat.2016.06.041
- O. Modin, X. Wang, X. Wu, S. Rauch and K.K. Fedje, J. Hazard. Mater., 235-236, 291 (2012);https://doi.org/10.1016/j.jhazmat.2012.07.058
- Y. Liu, L. Shen, P. Song, D. Chang, Z. Lu, Y. Liu, L. Cai and L. Zhang, Int. J. Electrochem. Sci., 14, 196 (2019);https://doi.org/10.20964/2019.01.31
- Y. Wu, X. Zhao, M. Jin, Y. Li, S. Li, F. Kong, J. Nan and A. Wang, Bioresour. Technol., 253, 372 (2018);https://doi.org/10.1016/j.biortech.2018.01.046
References
A.A. Yaqoob, A. Khatoon, S.H. Mohd Setapar, K. Umar, T. Parveen, M.N. Mohamad Ibrahim, A. Ahmad and M. Rafatullah, Catalysts, 10, 819 (2020);https://doi.org/10.3390/catal10080819
A.A. Yaqoob, M.N.M. Ibrahim and S. Rodríguez-Couto, Biochem. Eng. J., 164, 107779 (2020);https://doi.org/10.1016/j.bej.2020.107779
E.D. Brutinel and J.A. Gralnick, Appl. Microbiol. Biotechnol., 93, 41 (2012);https://doi.org/10.1007/s00253-011-3653-0
R. Orellana, J.J. Leavitt, L.R. Comolli, R. Csencsits, N. Janot, K.A. Flanagan, A.S. Gray, C. Leang, M. Izallalen, T. Mester and D.R. Lovley, Appl. Environ. Microbiol., 79, 6369 (2013);https://doi.org/10.1128/AEM.02551-13
N.S. Malvankar and D.R. Lovley, ChemSusChem, 5, 1039 (2012);https://doi.org/10.1002/cssc.201100733
L. Huang, X. Chai, X. Quan, B.E. Logan and G. Chen, Bioresour. Technol., 111, 167 (2012);https://doi.org/10.1016/j.biortech.2012.01.171
A.J. Slate, K.A. Whitehead, D.A. Brownson and C.E. Banks, Renew. Sustain. Energy Rev., 101, 60 (2019);https://doi.org/10.1016/j.rser.2018.09.044
A. Azimi, A. Azari, M. Rezakazemi and M. Ansarpour, ChemBioEng. Rev., 4, 37 (2017);https://doi.org/10.1002/cben.201600010
M.K. Uddin, Chem. Eng. J., 308, 438 (2017);https://doi.org/10.1016/j.cej.2016.09.029
H.I. Abdel-Shafy and M.S. Mansour, Egypt. J. Petrol., 25, 107 (2016);https://doi.org/10.1016/j.ejpe.2015.03.011
S. Alzahrani and A.W. Mohammad, J. Water Process Eng., 4, 107 (2014);https://doi.org/10.1016/j.jwpe.2014.09.007
N.H.H. Hairom, A.W. Mohammad, L.Y. Ng and A.A.H. Kadhum, Desalination Water Treat., 54, 944 (2015);https://doi.org/10.1080/19443994.2014.917988
Z.A.A. Aziz, H. Mohd-Nasir, A. Ahmad, S.H. Mohd. Setapar, W.L. Peng, S.C. Chuo, A. Khatoon, K. Umar, A.A. Yaqoob and M.N.M. Ibrahim, Front Chem., 7, 739 (2019);https://doi.org/10.3389/fchem.2019.00739
F. Moradi, V. Maleki, S. SalehGhadimi, F. Kooshki and B.P. Gargari, Clin. Exp. Pharmacol. Physiol., 46, 975 (2019);https://doi.org/10.1111/1440-1681.13144
G. Genchi, M. Sinicropi, A. Carocci, G. Lauria and A. Catalano, Int. J. Environ. Res. Public Health, 14, 761 (2017);https://doi.org/10.3390/ijerph14070761
A. Saghazadeh and N. Rezaei, Prog. Neuropsychopharmacol. Biol. Psychiatry, 79, 340 (2017);https://doi.org/10.1016/j.pnpbp.2017.07.011
A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M. Ismail, H.A. Qari, K. Umar and M.N.M. Ibrahim, Front Chem., 8, 341 (2020);https://doi.org/10.3389/fchem.2020.00341
T.R. Rajeswari and N. Sailaja, J. Chem. Pharm. Sci., 3, 175 (2014).
A.A. Yaqoob, M.N. Mohamad Ibrahim, M. Rafatullah, Y.S. Chua, A. Ahmad and K. Umar, Materials, 13, 2078 (2020);https://doi.org/10.3390/ma13092078
A.A. Yaqoob and M.N.M. Ibrahim, Int. Res. J. Eng. Technol., 6, 1 (2019).
A.A. Yaqoob, N.H.M. Noor, A. Serrà and M.N.M. Ibrahim, Nanomaterials, 10, 932 (2020);https://doi.org/10.3390/nano10050932
Y. Lu, L. Zhao and B. Wang, Electron. Commerce Res. Appl., 9, 346 (2010);https://doi.org/10.1016/j.elerap.2009.07.003
D. Ucar, Y. Zhang and I. Angelidaki, Front. Microbiol., 8, 643 (2017);https://doi.org/10.3389/fmicb.2017.00643
Y.V. Nancharaiah, S. Venkata Mohan and P.N.L. Lens, Bioresour. Technol., 215, 173 (2016);https://doi.org/10.1016/j.biortech.2016.03.129
H. Wang and Z.J. Ren, Water Res., 66, 219 (2014);https://doi.org/10.1016/j.watres.2014.08.013
N. Loman, C. Constantinidou, J. Chan, M. Halachev, M. Sergeant, C. Penn, E. Robinson and M. Pallen, Nat. Rev. Microbiol., 10, 599 (2012);https://doi.org/10.1038/nrmicro2850
R. Kumar, L. Singh and A. Zularisam, Renew. Sustain. Energy Rev., 56, 1322 (2016);https://doi.org/10.1016/j.rser.2015.12.029
Y. Cao, H. Mu, W. Liu, R. Zhang, J. Guo, M. Xian and H. Liu, Microb. Cell Fact., 18, 39 (2019);https://doi.org/10.1186/s12934-019-1087-z
B.E. Logan, Nat. Rev. Microbiol., 7, 375 (2009);https://doi.org/10.1038/nrmicro2113
A.E. Franks, K.P. Nevin, H. Jia, M. Izallalen, T.L. Woodard and D.R. Lovley, Energy Environ. Sci., 2, 113 (2009);https://doi.org/10.1039/B816445B
S. Kalathil and D. Pant, RSC Adv., 6, 30582 (2016);https://doi.org/10.1039/C6RA04734C
L. Ezziat, A. Elabed, S. Ibnsouda and S. El Abed, Front. Energy Res., 7, 1 (2019);https://doi.org/10.3389/fenrg.2019.00001
K.B. Gregory, D.R. Bond and D.R. Lovley, Environ. Microbiol., 6, 596 (2004);https://doi.org/10.1111/j.1462-2920.2004.00593.x
J.C. Thrash and J.D. Coates, Environ. Sci. Technol., 42, 3921 (2008);https://doi.org/10.1021/es702668w
A.A. Yaqoob, M.N.M. Ibrahim, A.S. Yaakop, K. Umar and A. Ahmad, Chem Eng J., 128052 (2020);https://doi.org/10.1016/j.cej.2020.128052
N. Xafenias, Y. Zhang and C.J. Banks, Environ. Sci. Technol., 47, 4512 (2013);https://doi.org/10.1021/es304606u
I. Gurung, I. Spielman, M.R. Davies, R. Lala, P. Gaustad, N. Biais and V. Pelicic, Mol. Microbiol., 99, 380 (2016);https://doi.org/10.1111/mmi.13237
S. Carbajosa, M. Malki, R. Caillard, M.F. Lopez, F.J. Palomares, J.A. Martín-Gago, N. Rodríguez, R. Amils, V.M. Fernández and A.L. De Lacey, Biosens. Bioelectron., 26, 877 (2010);https://doi.org/10.1016/j.bios.2010.07.037
M. Breuer, K.M. Rosso, J. Blumberger and J.N. Butt, J. R. Soc. Interface, 12, 20141117 (2015);https://doi.org/10.1098/rsif.2014.1117
S.M. Strycharz, R.H. Glaven, M.V. Coppi, S.M. Gannon, L.A. Perpetua, A. Liu, K.P. Nevin and D.R. Lovley, Bioelectrochemistry, 80, 142 (2011);https://doi.org/10.1016/j.bioelechem.2010.07.005
P.M. Shrestha and A.E. Rotaru, Front. Microbiol., 5, 237 (2014);https://doi.org/10.3389/fmicb.2014.00237
Y. Guan, Y. Gong, W. Li, J. Gelb, L. Zhang, G. Liu, X. Zhang, X. Song, C. Xia, Y. Xiong, H. Wang, Z. Wu and Y. Tian, J. Power Sources, 196, 10601 (2011);https://doi.org/10.1016/j.jpowsour.2011.08.083
F. Zhao, R.C. Slade and J.R. Varcoe, Chem. Soc. Rev., 38, 1926 (2009);https://doi.org/10.1039/b819866g
S.A. Patil, C. Hägerhäll and L. Gorton, Bioanal. Rev., 4, 159 (2012);https://doi.org/10.1007/s12566-012-0033-x
X. Jiang, J. Hu, L.A. Fitzgerald, J.C. Biffinger, P. Xie, B.R. Ringeisen and C.M. Lieber, Proc. Natl. Acad., 107, 16806 (2010);https://doi.org/10.1073/pnas.1011699107
G. Pankratova, L. Hederstedt and L. Gorton, Anal. Chim. Acta, 1076, 32 (2019);https://doi.org/10.1016/j.aca.2019.05.007
S. Pirbadian, M.S. Chavez and M.Y. El-Naggar, Proc. Natl. Acad., 117, 20171 (2020);https://doi.org/10.1073/pnas.2000802117
H. Peng, Y. Ouyang, M. Bilal, W. Wang, H. Hu and X. Zhang, Microb. Cell Fact., 17, 9 (2018);https://doi.org/10.1186/s12934-017-0854-y
M. Bilal, S. Wang, H.M. Iqbal, Y. Zhao, H. Hu, W. Wang and X. Zhang, Appl. Microbiol. Biotechnol., 102, 7759 (2018);https://doi.org/10.1007/s00253-018-9222-z
Evelyn, Y. Li, A. Marshall and P.A. Gostomski, Rev. Environ. Sci. Biotechnol., 13, 35 (2014);https://doi.org/10.1007/s11157-013-9322-2
S.H. Sekeri, M.N.M. Ibrahim, K. Umar, A.A. Yaqoob, M.N. Azmi, M.H. Hussin, M.B.H. Othman and M.F.I.A. Malik, Int. J. Biol. Macromol., 164, 3114 (2020);https://doi.org/10.1016/j.ijbiomac.2020.08.181
W. Liu, H. Yuan, J. Yang and B. Li, Bioresour. Technol., 100, 2629 (2009);https://doi.org/10.1016/j.biortech.2008.12.017
E. Zhang, Y. Cai, Y. Luo and Z. Piao, Can. J. Microbiol., 60, 753 (2014);https://doi.org/10.1139/cjm-2014-0389
P. Parameswaran, T. Bry, S.C. Popat, B.C. Lusk, B.E. Rittmann and C.I. Torres, Environ. Sci. Technol., 47, 4934 (2013);https://doi.org/10.1021/es400321c
K. Wrighton, J. Thrash, R. Melnyk, J. Bigi, K. Byrne-Bailey, J. Remis, D. Schichnes, M. Auer, C. Chang and J. Coates, Appl. Environ. Microbiol., 77, 7633 (2011);https://doi.org/10.1128/AEM.05365-11
O. Obata, M.J. Salar-Garcia, J. Greenman, H. Kurt, K. Chandran and I. Ieropoulos, J. Environ. Manage., 258, 109992 (2020);https://doi.org/10.1016/j.jenvman.2019.109992
S.R. Babu Arulmani, H.L. Ganamuthu, V. Ashokkumar, G. Govindarajan, S. Kandasamy and H. Zhang, Environ. Technol. Innov., 20, 101145 (2020);https://doi.org/10.1016/j.eti.2020.101145
J.H. Merritt, D.-G. Ha, K.N. Cowles, W. Lu, D.K. Morales, J. Rabinowitz, Z. Gitai and G.A. O’Toole, MBio, 1, e00183-10 (2010);https://doi.org/10.1128/mBio.00183-10
J.G. Malone, T. Jaeger, P. Manfredi, A. Dötsch, A. Blanka, R. Bos, G.R. Cornelis, S. Häussler and U. Jenal, PLoS Pathog., 8, e1002760 (2012);https://doi.org/10.1371/journal.ppat.1002760
S.i. Ishii, K. Watanabe, S. Yabuki, B.E. Logan and Y. Sekiguchi, Appl. Environ. Microbiol., 74, 7348 (2008);https://doi.org/10.1128/AEM.01639-08
K. Solanki, S. Subramanian and S. Basu, Bioresour. Technol., 131, 564 (2013);https://doi.org/10.1016/j.biortech.2012.12.063
M.N.I. Siddique and Z.A. Wahid, J. Clean. Prod., 194, 359 (2018);https://doi.org/10.1016/j.jclepro.2018.05.155
A. Adebule, B. Aderiye and A. Adebayo, Ann. Appl. Microbiol. Biotechnol. J., 2, 1008 (2018).
S.C. Chuo, S.F. Mohamed, S.H. Mohd Setapar, A. Ahmad, M. Jawaid, W.A. Wani, A.A. Yaqoob and M.N. Mohamad Ibrahim, Materials, 13, 4993 (2020);https://doi.org/10.3390/ma13214993
B.E. Logan, Environ. Sci. Technol., 38, 160A (2004);https://doi.org/10.1021/es040468s
L.-P. Fan and S. Xue, Open Biotechnol. J., 10, 398 (2016);https://doi.org/10.2174/1874070701610010398
J. Liu, Y. Yong, H. Song and C.M. Li, ACS Catal., 2, 1749 (2012);https://doi.org/10.1021/cs3003808
A. Fraiwan, H. Lee and S. Choi, IEEE Sens. J., 14, 3385 (2014);https://doi.org/10.1109/JSEN.2014.2332075
A.V. Samrot, P. Senthilkumar, K. Pavankumar, G. Akilandeswari, N. Rajalakshmi and K. Dhathathreyan, Int. J. Hydrogen Energ., 35, 7723 (2010);https://doi.org/10.1016/j.ijhydene.2010.05.047
L. Singh, M.F. Siddiqui, A. Ahmad, M.H.A. Rahim, M. Sakinah and Z.A. Wahid, J. Ind. Eng. Chem., 19, 659 (2013);https://doi.org/10.1016/j.jiec.2012.10.001
P. Bolat and C. Thiel, Int. J. Hydrogen Energy, 39, 8898 (2014);https://doi.org/10.1016/j.ijhydene.2014.03.170
L. Huang, X. Chai, G. Chen and B.E. Logan, Environ. Sci. Technol., 45, 5025 (2011);https://doi.org/10.1021/es103875d
H. Richter, K. McCarthy, K.P. Nevin, J.P. Johnson, V.M. Rotello and D.R. Lovley, Langmuir, 24, 4376 (2008);https://doi.org/10.1021/la703469y
W.P. Hamilton, M. Kim and E.L. Thackston, Water Res., 39, 4869 (2005);https://doi.org/10.1016/j.watres.2005.02.006
L. Xiao and Z. He, Renew. Sustain. Energy Rev., 37, 550 (2014);https://doi.org/10.1016/j.rser.2014.05.066
S. Pandit, S. Khilari, S. Roy, D. Pradhan and D. Das, Bioresour. Technol., 166, 451 (2014);https://doi.org/10.1016/j.biortech.2014.05.075
D. Xing, Y. Zuo, S. Cheng, J.M. Regan and B.E. Logan, Environ. Sci. Technol., 42, 4146 (2008);https://doi.org/10.1021/es800312v
Y. Qiao, C.M. Li, S.-J. Bao, Z. Lu and Y. Hong, Chem. Commun., 1290 (2008);https://doi.org/10.1039/B719955D
S.V. Raghavulu, R.K. Goud, P. Sarma and S.V. Mohan, Bioresour. Technol., 102, 2751 (2011);https://doi.org/10.1016/j.biortech.2010.11.048
D. Prasad, S. Arun, M. Murugesan, S. Padmanaban, R. Satyanarayanan, S. Berchmans and V. Yegnaraman, Biosens. Bioelectron., 22, 2604 (2007);https://doi.org/10.1016/j.bios.2006.10.028
D. Sun, A. Wang, S. Cheng, M. Yates and B.E. Logan, Int. J. Syst. Evol. Microbiol., 64, 3485 (2014);https://doi.org/10.1099/ijs.0.061598-0
X. Li, G. -Z. Zhong, Y. Qiao, J. Huang, W.H. Hu, X.-G. Wang and C.M. Li, RSC Adv., 4, 39839 (2014);https://doi.org/10.1039/C4RA05077K
A. Nandy, V. Kumar and P.P. Kundu, Enzyme Microb. Technol., 53, 339 (2013);https://doi.org/10.1016/j.enzmictec.2013.07.006
Z.-i. Kimura, K.M. Chung, H. Itoh, A. Hiraishi and S. Okabe, Int. J. Syst. Evol. Microbiol., 64, 1384 (2014);https://doi.org/10.1099/ijs.0.058826-0
Y. Cui, N. Rashid, N. Hu, M.S.U. Rehman and J.-I. Han, Energy Convers. Manage., 79, 674 (2014);https://doi.org/10.1016/j.enconman.2013.12.032
A.E. Inglesby, D.A. Beatty and A.C. Fisher, RSC Adv., 2, 4829 (2012);https://doi.org/10.1039/c2ra20264f
Y. Yuan, Q. Chen, S. Zhou, L. Zhuang and P. Hu, J. Hazard. Mater., 187, 591 (2011);https://doi.org/10.1016/j.jhazmat.2011.01.042
C. Dumas, R. Basseguy and A. Bergel, Electrochim. Acta, 53, 5235 (2008);https://doi.org/10.1016/j.electacta.2008.02.056
S. Freguia, S. Tsujimura and K. Kano, Electrochim. Acta, 55, 813 (2010);https://doi.org/10.1016/j.electacta.2009.09.027
S.P. Ong, A. Jain, G. Hautier, B. Kang and G. Ceder, Electrochem. Commun., 12, 427 (2010);https://doi.org/10.1016/j.elecom.2010.01.010
A. González del Campo, P. Cañizares, M.A. Rodrigo, F.J. Fernández and J. Lobato, J. Power Sources, 242, 638 (2013);https://doi.org/10.1016/j.jpowsour.2013.05.110
A. Arvay, E. Yli-Rantala, C. Liu, X. Peng, P. Koski, L. Cindrella, P. Kauranen, P. Wilde and A.M. Kannan, J. Power Sources, 213, 317 (2012);https://doi.org/10.1016/j.jpowsour.2012.04.026
A.A. Yaqoob, T. Parveen, K. Umar and M.N. Mohamad Ibrahim, Rev. Water., 12, 495 (2020); https://doi.org/10.3390/w12020495
S. Gupta, A. Yadav and N. Verma, Chem. Eng. J., 307, 729 (2017);https://doi.org/10.1016/j.cej.2016.08.130
C. Kim, C.R. Lee, Y.E. Song, J. Heo, S.M. Choi, D.-H. Lim, J. Cho, C. Park, M. Jang and J.R. Kim, Chem. Eng. J., 328, 703 (2017);https://doi.org/10.1016/j.cej.2017.07.077
A.A. Yaqoob, M.N.M. Ibrahim, K. Umar, S.A. Bhawani, A. Khan, A.M. Asiri, M.R Khan, M. Azam, and A.M. AlAmmari, Polymer., 135-161 (2021);https://doi.org/10.3390/polym13010135
Q. Wang, L. Huang, Y. Pan, X. Quan and G. Li Puma, J. Hazard. Mater., 321, 896 (2017);https://doi.org/10.1016/j.jhazmat.2016.10.011
D.P. Hanak, M. Erans, S.A. Nabavi, M. Jeremias, L.M. Romeo and V. Manovic, Chem. Eng. J., 335, 763 (2018);https://doi.org/10.1016/j.cej.2017.11.022
Y. Zheng, M. Ouyang, X. Han, L. Lu and J. Li, J. Power Sources, 377, 161 (2018);https://doi.org/10.1016/j.jpowsour.2017.11.094
A. Kilicarslan, M. Saridede, S. Stopic and B. Friedrich, Proceedings of the 10th European Metallurgical Conference (EMC), pp. 1167-1172, Düsseldorf, Germany, June 24-26 (2019).
I. Birloaga and F. Vegliò, J. Environ. Chem. Eng., 6, 2932 (2018);https://doi.org/10.1016/j.jece.2018.04.040
T. Nawaz and S. Sengupta, Sep. Purif. Technol., 176, 145 (2017);https://doi.org/10.1016/j.seppur.2016.11.076
A.A. Yaqoob, M.N.M. Ibrahim, A. Ahmad and A.V.B. Reddy, Toxico-logy and Environmental Application of Carbon Nanocomposite;In: Environmental Remediation through Carbon Based Nano Composites;Springer: Berlin/Heidelberg, Germany, pp. 1-18 (2021).
A.A. Yaqoob, R.M.R. Khan and A. Saddique, Int. J. Res., 6, 762 (2019);https://doi.org/10.1088/1757-899X/263/3/032019
A.A. Yaqoob, K. Umar and M.N.M. Ibrahim, Appl. Nanosci., 10, 1369 (2020);https://doi.org/10.1007/s13204-020-01318-w
C. Liu, W. Shi, H. Li, Z. Lei, L. He and Z. Zhang, Bioresour. Technol., 155, 198 (2014);https://doi.org/10.1016/j.biortech.2013.12.041
M. Ayotamuno, R. Kogbara, S. Ogaji and S. Probert, Appl. Energy, 83, 1258 (2006);https://doi.org/10.1016/j.apenergy.2006.01.004
J.L.W. Lwalaba, G. Zvobgo, L. Fu, X. Zhang, T.M. Mwamba, N. Muhammad, R.P.M. Mundende and G. Zhang, Ecotoxicol. Environ. Saf., 139, 488 (2017);https://doi.org/10.1016/j.ecoenv.2017.02.019
L. Huang, B. Yao, D. Wu and X. Quan, J. Power Sources, 259, 54 (2014);https://doi.org/10.1016/j.jpowsour.2014.02.061
Y.V. Nancharaiah, S.V. Mohan and P.N.L. Lens, Bioresour. Technol., 195, 102 (2015);https://doi.org/10.1016/j.biortech.2015.06.058
B. Zhang, C. Feng, J. Ni, J. Zhang and W. Huang, J. Power Sources, 204, 34 (2012);https://doi.org/10.1016/j.jpowsour.2012.01.013
E.Y. Ryu, M. Kim and S.J. Lee, J. Microbiol. Biotechnol., 21, 187 (2011);https://doi.org/10.4014/jmb.1008.08019
J.C. Varia, S.S. Martinez, S. Velasquez-Orta and S. Bull, Electrochim. Acta, 115, 344 (2014);https://doi.org/10.1016/j.electacta.2013.10.166
L. Huang, J. Chen, X. Quan and F. Yang, Bioprocess Biosyst. Eng., 33, 937 (2010);https://doi.org/10.1007/s00449-010-0417-7
C. Choi and Y. Cui, Bioresour. Technol., 107, 522 (2012);https://doi.org/10.1016/j.biortech.2011.12.058
C. Jin, F. Li, C. Choi and B. Lim, Environ. Eng. Manag. J., 18, 235 (2019);https://doi.org/10.30638/eemj.2019.023
Y. Jiang, A.C. Ulrich and Y. Liu, Bioresour. Technol., 139, 349 (2013);https://doi.org/10.1016/j.biortech.2013.04.050
B.G. Zhang, S.G. Zhou, H.Z. Zhao, C.H. Shi, L.C. Kong, J.J. Sun, Y. Yang and J.R. Ni, Bioprocess Biosyst. Eng., 33, 187 (2010);https://doi.org/10.1007/s00449-009-0312-2
Y. Li, A. Lu, H. Ding, S. Jin, Y. Yan, C. Wang, C. Zen and X. Wang, Electrochem. Commun., 11, 1496 (2009);https://doi.org/10.1016/j.elecom.2009.05.039
C. Abourached, T. Catal and H. Liu, Water Res., 51, 228 (2014);https://doi.org/10.1016/j.watres.2013.10.062
G. Wang, L. Huang and Y. Zhang, Biotechnol. Lett., 30, 1959 (2008);https://doi.org/10.1007/s10529-008-9792-4
H.C. Tao, W. Li, M. Liang, N. Xu, J.R. Ni and W.M. Wu, Bioresour. Technol., 102, 4774 (2011);https://doi.org/10.1016/j.biortech.2011.01.057
R. Qiu, B. Zhang, J. Li, Q. Lv, S. Wang and Q. Gu, J. Power Sources, 359, 379 (2017);https://doi.org/10.1016/j.jpowsour.2017.05.099
Y.H. Wang, B.S. Wang, B. Pan, Q.Y. Chen and W. Yan, Appl. Energy, 112, 1337 (2013);https://doi.org/10.1016/j.apenergy.2013.01.012
P. Singhvi and M. Chhabra, J. Bioremed. Biodeg., 4, 190 (2013);https://doi.org/10.4172/2155-6199.1000190
C. Choi and N. Hu, Bioresour. Technol., 133, 589 (2013);https://doi.org/10.1016/j.biortech.2013.01.143
T. Zhang, L. Hu, M. Zhang, M. Jiang, H. Fiedler, W. Bai, X. Wang, D. Zhang and Z. Li, Environ. Pollut., 252(Part B), 1399 (2019);https://doi.org/10.1016/j.envpol.2019.06.051
M. Tandukar, U. Tezel and S.G. Pavlostathis, Proc. Water Environ. Fed., 2009, 527 (2009);https://doi.org/10.2175/193864709793955744
F. Ya-li, W. Wei-da, T. Xin-hua, L. Hao-ran, D. Zhuwei, Y. Zhi-chao and D. Yun-long, RSC Adv., 4, 36458 (2014);https://doi.org/10.1039/C4RA04090B
Y. Liu, P. Song, R. Gai, C. Yan, Y. Jiao, D. Yin, L. Cai and L. Zhang, J. Saudi Chem. Soc., 23, 338 (2019);https://doi.org/10.1016/j.jscs.2018.08.003
H.C. Tao, M. Liang, W. Li, L. Zhang, J.R. Ni and W.M. Wu, J. Hazard. Mater., 189, 186 (2011);https://doi.org/10.1016/j.jhazmat.2011.02.018
Z. Wang, B. Lim and C. Choi, Bioresour. Technol., 102, 6304 (2011);https://doi.org/10.1016/j.biortech.2011.02.027
R. Gai, Y. Liu, J. Liu, C. Yan, Y. Jiao, L. Cai and L. Zhang, Int. J. Electrochem. Sci., 13, 3050 (2018);https://doi.org/10.20964/2018.03.69
S.Z. Abbas, M. Rafatullah, N. Ismail and R.A. Nastro, Int. J. Energy Res., 2, 56 (2017);https://doi.org/10.1002/er.3804
L. Huang, T. Li, C. Liu, X. Quan, L. Chen, A. Wang and G. Chen, Bioresour. Technol., 128, 539 (2013);https://doi.org/10.1016/j.biortech.2012.11.011
Y. Wu, L. Wang, M. Jin, F. Kong, H. Qi and J. Nan, Bioresour. Technol., 283, 129 (2019);https://doi.org/10.1016/j.biortech.2019.03.080
R. Kumar, L. Singh, A. Zularisam and F.I. Hai, Int. J. Energy Res., 42, 369 (2018);https://doi.org/10.1002/er.3780
Z. Wang, B. Zhang, Y. Jiang, Y. Li and C. He, Appl. Energy, 209, 33 (2018);https://doi.org/10.1016/j.apenergy.2017.10.075
L. Huang, P. Zhou, X. Quan and B.E. Logan, Bioelectrochemistry, 122, 61 (2018);https://doi.org/10.1016/j.bioelechem.2018.02.010
N. Habibul, Y. Hu and G.P. Sheng, J. Hazard. Mater., 318, 9 (2016);https://doi.org/10.1016/j.jhazmat.2016.06.041
O. Modin, X. Wang, X. Wu, S. Rauch and K.K. Fedje, J. Hazard. Mater., 235-236, 291 (2012);https://doi.org/10.1016/j.jhazmat.2012.07.058
Y. Liu, L. Shen, P. Song, D. Chang, Z. Lu, Y. Liu, L. Cai and L. Zhang, Int. J. Electrochem. Sci., 14, 196 (2019);https://doi.org/10.20964/2019.01.31
Y. Wu, X. Zhao, M. Jin, Y. Li, S. Li, F. Kong, J. Nan and A. Wang, Bioresour. Technol., 253, 372 (2018);https://doi.org/10.1016/j.biortech.2018.01.046