Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Surface Modification of Cellulose Nanofiber with Polyaniline using Aniline Monolayer as Seed for Chemical Oxidation Polymerization of Aniline
Corresponding Author(s) : K. Pandian
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
A simple method is adopted to prepare conducting polyaniline thin film on cellulose filter paper by chemical oxidative polymerization. In order to improve the adhesion of polyaniline on cellulose nanofiber aniline terminal, silane monolayer was used as catalyst to initiate polymerization reaction. It was also showed that aniline dimer modified cellulose nanofiber shows an enhanced polyaniline growth and acting as seed for the polyaniline growth. The polyaniline modified cellulose fibre filter paper was then characterized with UV-visible spectroscopy, FT-IR, FE-SEM and electrochemical studies. Polyaniline modified filter paper strips can be used for naked eye sensing of ammonia and hydrazine in environmental samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Eskandari, M. Kosari, M.H. Davood Abadi Farahani, N.D. Khiavi, M. Saeedikhani, R. Katal and M. Zarinejad, Sep. Purif. Technol., 231, 115901 (2020);https://doi.org/10.1016/j.seppur.2019.115901
- Y. Li, R. He, Y. Niu and F. Li, J. Anal. Testing, 3, 19 (2019);https://doi.org/10.1007/s41664-019-00085-0
- Y. Tokura, Y. Moriyama, Y. Hiruta and S. Shiratori, ACS Appl. Nanomater., 2, 241 (2019);https://doi.org/10.1021/acsanm.8b01782
- J. Sarfraz, P. Ihalainen, A. Maattanen, J. Peltonen and M. Linden, Thin Solid Films, 534, 621 (2013);https://doi.org/10.1016/j.tsf.2013.02.055
- P. Paulraj, N. Janaki, S. Sandhya and K. Pandian, Colloids Surf. A Physicochem. Eng. Asp., 377, 28 (2011);https://doi.org/10.1016/j.colsurfa.2010.12.001
- Z.F. Li and E. Ruckenstein, Macromolecules, 35, 9506 (2002);https://doi.org/10.1021/ma020963d
- R. Li, L. Liu and F. Yang, J. Hazard. Mater., 280, 20 (2014);https://doi.org/10.1016/j.jhazmat.2014.07.052
- J. Wang, B. Deng, H. Chen, X. Wang and J. Zheng, Environ. Sci. Technol., 43, 5223 (2009);https://doi.org/10.1021/es803710k
- K. Jahan, N. Kumar and V. Verma, Environ. Sci. Water Res. Technol., 4, 1589 (2018);https://doi.org/10.1039/C8EW00255J
- K.L. Bhowmik, K. Deb, A. Bera, A. Debnath and B. Saha, J. Mol. Liq., 261, 189 (2018);https://doi.org/10.1016/j.molliq.2018.03.128
- C.-G. Wu and J.-Y. Chen, Chem. Mater., 9, 399 (1997);https://doi.org/10.1021/cm9602860
- Y.T. Tao, K. Pandian and W.C. Lee, Langmuir, 14, 6158 (1998);https://doi.org/10.1021/la980767t
- L.M. Santos, J. Ghilane, C. Fave, P.C. Lacaze, H. Randriamahazaka, L.M. Abrantes and J.C. Lacroix, J. Phys. Chem. C, 112, 16103 (2008);https://doi.org/10.1021/jp8042818
- J. Cai, S. Kimura, M. Wada and S. Kuga, Biomacromolecules, 10, 87 (2009);https://doi.org/10.1021/bm800919e
- J. He, T. Kunitake and A. Nakao, Chem. Mater., 15, 4401 (2003);https://doi.org/10.1021/cm034720r
- G. Zheng, K. Kaefer, S. Mourdikoudis, L. Polavarapu, S.E. Cartmell, B. Vaz, A. Bouleghlimat, N.J. Buurma, L. Yate, Á.R. de Lera, L.M. Liz-Marzán, I. Pastoriza-Santos and J. Pérez-Juste, J. Phys. Chem. Lett., 6, 230 (2015);https://doi.org/10.1021/jz5024948
- J.H. Kim, K.M. Twaddle, J. Hu and H. Byun, ACS Appl. Mater. Interfaces, 6, 11514 (2014);https://doi.org/10.1021/am503745w
- D. Das, S. Senapati and K.K. Nanda, ACS Sustain. Chem. Eng., 7, 14089 (2019);https://doi.org/10.1021/acssuschemeng.9b02651
- W.M. Lemke, R.B. Kaner and P.L. Diaconescu, Inorg. Chem. Front., 2, 35 (2015);https://doi.org/10.1039/C4QI00130C
- Z. Huang, P.-C. Wang, A.G. MacDiarmid, Y. Xia and G. Whitesides, Langmuir, 13, 6480 (1997);https://doi.org/10.1021/la970537z
- W.S. Huang, B.D. Humphrey and A.G. MacDiarmid, J. Chem. Soc., Faraday Trans., 82, 2385 (1986);https://doi.org/10.1039/f19868202385
- S. Tao, B. Hong and Z. Kerong, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 1364 (2007);https://doi.org/10.1016/j.saa.2006.08.011
References
E. Eskandari, M. Kosari, M.H. Davood Abadi Farahani, N.D. Khiavi, M. Saeedikhani, R. Katal and M. Zarinejad, Sep. Purif. Technol., 231, 115901 (2020);https://doi.org/10.1016/j.seppur.2019.115901
Y. Li, R. He, Y. Niu and F. Li, J. Anal. Testing, 3, 19 (2019);https://doi.org/10.1007/s41664-019-00085-0
Y. Tokura, Y. Moriyama, Y. Hiruta and S. Shiratori, ACS Appl. Nanomater., 2, 241 (2019);https://doi.org/10.1021/acsanm.8b01782
J. Sarfraz, P. Ihalainen, A. Maattanen, J. Peltonen and M. Linden, Thin Solid Films, 534, 621 (2013);https://doi.org/10.1016/j.tsf.2013.02.055
P. Paulraj, N. Janaki, S. Sandhya and K. Pandian, Colloids Surf. A Physicochem. Eng. Asp., 377, 28 (2011);https://doi.org/10.1016/j.colsurfa.2010.12.001
Z.F. Li and E. Ruckenstein, Macromolecules, 35, 9506 (2002);https://doi.org/10.1021/ma020963d
R. Li, L. Liu and F. Yang, J. Hazard. Mater., 280, 20 (2014);https://doi.org/10.1016/j.jhazmat.2014.07.052
J. Wang, B. Deng, H. Chen, X. Wang and J. Zheng, Environ. Sci. Technol., 43, 5223 (2009);https://doi.org/10.1021/es803710k
K. Jahan, N. Kumar and V. Verma, Environ. Sci. Water Res. Technol., 4, 1589 (2018);https://doi.org/10.1039/C8EW00255J
K.L. Bhowmik, K. Deb, A. Bera, A. Debnath and B. Saha, J. Mol. Liq., 261, 189 (2018);https://doi.org/10.1016/j.molliq.2018.03.128
C.-G. Wu and J.-Y. Chen, Chem. Mater., 9, 399 (1997);https://doi.org/10.1021/cm9602860
Y.T. Tao, K. Pandian and W.C. Lee, Langmuir, 14, 6158 (1998);https://doi.org/10.1021/la980767t
L.M. Santos, J. Ghilane, C. Fave, P.C. Lacaze, H. Randriamahazaka, L.M. Abrantes and J.C. Lacroix, J. Phys. Chem. C, 112, 16103 (2008);https://doi.org/10.1021/jp8042818
J. Cai, S. Kimura, M. Wada and S. Kuga, Biomacromolecules, 10, 87 (2009);https://doi.org/10.1021/bm800919e
J. He, T. Kunitake and A. Nakao, Chem. Mater., 15, 4401 (2003);https://doi.org/10.1021/cm034720r
G. Zheng, K. Kaefer, S. Mourdikoudis, L. Polavarapu, S.E. Cartmell, B. Vaz, A. Bouleghlimat, N.J. Buurma, L. Yate, Á.R. de Lera, L.M. Liz-Marzán, I. Pastoriza-Santos and J. Pérez-Juste, J. Phys. Chem. Lett., 6, 230 (2015);https://doi.org/10.1021/jz5024948
J.H. Kim, K.M. Twaddle, J. Hu and H. Byun, ACS Appl. Mater. Interfaces, 6, 11514 (2014);https://doi.org/10.1021/am503745w
D. Das, S. Senapati and K.K. Nanda, ACS Sustain. Chem. Eng., 7, 14089 (2019);https://doi.org/10.1021/acssuschemeng.9b02651
W.M. Lemke, R.B. Kaner and P.L. Diaconescu, Inorg. Chem. Front., 2, 35 (2015);https://doi.org/10.1039/C4QI00130C
Z. Huang, P.-C. Wang, A.G. MacDiarmid, Y. Xia and G. Whitesides, Langmuir, 13, 6480 (1997);https://doi.org/10.1021/la970537z
W.S. Huang, B.D. Humphrey and A.G. MacDiarmid, J. Chem. Soc., Faraday Trans., 82, 2385 (1986);https://doi.org/10.1039/f19868202385
S. Tao, B. Hong and Z. Kerong, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 1364 (2007);https://doi.org/10.1016/j.saa.2006.08.011