Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mechanochemistry in Action: Exploitation of Internal Acid Catalysis in Solvent-Free Synthesis of Imines and Evaluation of Radical Scavenging Activities of Imino Derivatives
Corresponding Author(s) : Subhojit Ghosh
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
Mechanochemical protocol has been exploited to accomplish the synthesis of imino derivatives from aromatic amines with acidic functionalities and different aromatic aldehydes in excellent to nearly quantitative yields. Presence of acidic groups in the aromatic amines has been found to have profound influence on the course of the reaction. The prepared imines were screened for in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Some of the prepared imino derivatives displayed good to moderate antioxidant property when compared with standard natural antioxidant (L-ascorbic acid).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Kumar, A. Rai and V.A. Raj, Org. Med. Chem. Int. J., 1, 555 (2017).
- C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins and A. de Fatima, J. Adv. Res., 2, 1 (2011);https://doi.org/10.1016/j.jare.2010.05.004
- A. Kajal, S. Bala, S. Kamboj, N. Sharma and V. Saini, J. Catal., 2013, 893512 (2013);https://doi.org/10.1155/2013/893512
- J.Á. Martín-Illán, D. Rodríguez-San-Miguel, C. Franco, I. Imaz, D. Maspoch, J. Puigmartí-Luis and F. Zamora, Chem. Commun., 56, 6704 (2020);https://doi.org/10.1039/D0CC02033H
- M. Mandewale, B. Thorat, U. Patil and R. Yamgar, Int. J. Chem. Pharm. Sci., 3, 1919 (2015).
- L.K.A. Karem, F.Y. Waddai and N.H. Karam, J. Pharm. Sci. Res., 10, 1912 (2018).
- A. Otero, M.-J. Chapela, M. Atanassova, J.M. Vieites and A.G. Cabado, Chem. Res. Toxicol., 24, 1817 (2011);https://doi.org/10.1021/tx200182m
- A.R. Katritzky and N. Dennis, Chem. Rev., 89, 827 (1989);https://doi.org/10.1021/cr00094a006
- C.J. Doonan, W. Morris, H. Furukawa and O.M. Yaghi, J. Am. Chem. Soc., 131, 9492 (2009);https://doi.org/10.1021/ja903251e
- M. Wang, Z. Huang, J. Xu and Y.R. Chi, J. Am. Chem. Soc., 136, 1214 (2014);https://doi.org/10.1021/ja411110f
- R.W. Layer, Chem. Rev., 63, 489 (1963);https://doi.org/10.1021/cr60225a003
- M.E. Belowich and J.F. Stoddart, Chem. Soc. Rev., 41, 2003 (2012);https://doi.org/10.1039/c2cs15305j
- X. Liu and J.-R. Hamon, Coord. Chem. Rev., 389, 94 (2019);https://doi.org/10.1016/j.ccr.2019.03.010
- O. Sebastian and A. Thapa, J. Chem. Pharm. Res., 7, 953 (2015).
- M.S. More, P.G. Joshi, Y.K. Mishra and P.K. Khanna, Mater Today Chem., 14, 100195 (2019);https://doi.org/10.1016/j.mtchem.2019.100195
- A.M. Abu- Dief and I.M.A. Mohamed, Beni Suef Univ. J. Basic Appl. Sci., 4, 119 (2015);https://doi.org/10.1016/j.bjbas.2015.05.004
- C.S. Diercks, M.J. Kalmutzki, N.J. Diercks and O.M. Yaghi, ACS Cent. Sci., 4, 1457 (2018);https://doi.org/10.1021/acscentsci.8b00677
- A. Xavier and N. Srividhya, IOSR J. Appl. Chem., 7, 6 (2014);https://doi.org/10.9790/5736-071110615
- S.A. Dalia and F. Afsan, Int. J. Chem. Studies, 6, 2859 (2018).
- H. Schiff, Annalen der Chemie und Pharmacie, 131, 118 (1864);https://doi.org/10.1002/jlac.18641310113
- M.B. Smith and J. March, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, Inc.: New York, edn 6, Chap. 16 (2007).
- S. Chacko and S. Samanta, Biomed. Pharmacother., 89, 162 (2017);https://doi.org/10.1016/j.biopha.2017.01.108
- S.K. Shrivastava, P. Srivastava, T.V.R. Upendra, P.N. Tripathi and S.K. Sinha, Bioorg. Med. Chem., 25, 1471 (2017);https://doi.org/10.1016/j.bmc.2017.01.010
- P. Hirunsit, T. Toyao, S.M.A. Hakim Siddiki, K. Shimizu and M. Ehara, ChemPhysChem, 19, 2848 (2018);https://doi.org/10.1002/cphc.201800723
- T.K. Achar, A. Bose and P. Mal, Beilstein J. Org. Chem., 13, 1907 (2017);https://doi.org/10.3762/bjoc.13.186
- M. Leonardi, M. Villacampa and J.C. Menendez, Chem. Sci., 9, 2042 (2018);https://doi.org/10.1039/C7SC05370C
- Y.-H. Cai, R.-F. Peng, S.-J. Chu and S.-J. Chu, Asian J. Chem., 22, 5835 (2010).
- S.-J. Li and Y.-H. Cai, Asian J. Chem., 23, 2619 (2011).
- M. Ferguson, N. Giri, X. Huang, D. Apperley and S.L. James, Green Chem., 16, 1374 (2014);https://doi.org/10.1039/C3GC42141D
- G.T. Tigineh and L.-K. Liu, J. Chin. Chem. Soc., 66, 1729 (2019);https://doi.org/10.1002/jccs.201800486
- G.T. Tigineh, Y.-S. Wen and L.-K. Liu, Tetrahedron, 71, 170 (2015);https://doi.org/10.1016/j.tet.2014.10.074
- L. Leoni, A. Carletta, L. Fusaro, J. Dubois, N.A. Tumanov, C. Aprile, J. Wouters and A.D. Cort, Molecules, 24, 2314 (2019);https://doi.org/10.3390/molecules24122314
- A. Lawal, Int. J. Innov. Res. Dev., 6, 79 (2017).
- G.A. Bowmaker, Chem. Commun., 49, 334 (2013);https://doi.org/10.1039/C2CC35694E
- G. Yadav and J.V. Mani, Int. J. Sci. Res., 4, 121 (2015).
- M.S. Blois, Nature, 181, 1199 (1958);https://doi.org/10.1038/1811199a0
- I. Parejo, C. Codina, C. Petrakis and P. Kefalas, J. Pharmacol. Tox. Methods, 44, 507 (2000);https://doi.org/10.1016/S1056-8719(01)00110-1
- C.D. Johnson, The Hammett Equation, Cambridge University Press: London and New York (1973).
- F.A. Carey and R.J. Sunberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, Kluwer Academic Publishers: New York, edn 4 (2002).
- J.B. Ekeley and P.M. Dean, J. Am. Chem. Soc., 34, 161 (1912);https://doi.org/10.1021/ja02203a005
- T.V.R.K. Rao and B.N. Das, Asian J. Chem., 11, 231 (1999).
- S. Md Al-Nuzal and A. Ha Al-Amery, J. Chem. Pharm. Res., 8, 290 (2016).
- J. Parekh, P. Inamdhar, R. Nair, S. Baluja and S. Chanda, J. Serb. Chem. Soc., 70, 1155 (2005);https://doi.org/10.2298/JSC0510155P
- L.A. Saghatforoush, R. Khalilnezhad, S. Ershad, S. Ghammamy and M. Hasanzadeh, Asian J. Chem., 21, 6326 (2009).
- C. Deng, Z. Lin, M. Yang and B. Xu, Adv. Mater. Res., 201-203, 2550 (2011);https://doi.org/10.4028/www.scientific.net/AMR.201-203.2550
- T.M. Florence, Aust. N. Z. J. Ophthalmol., 23, 3 (1995);https://doi.org/10.1111/j.1442-9071.1995.tb01638.x
- Z.D. Petrovic, J. Ðorovic, D. Simijonovic, V.P. Petrovic and Z. Markovic, RSC Adv., 5, 24094 (2015);https://doi.org/10.1039/C5RA02134K
- C. Sanchez-Moreno, Food Sci. Technol. Int., 8, 121 (2002);https://doi.org/10.1177/1082013202008003770
- M.E. Crisan, P. Bourosh, M.E. Maffei, A. Forni, S. Pieraccini, M. Sironi and Y.M. Chumakov, PLoS One, 9, e101892 (2014);https://doi.org/10.1371/journal.pone.0101892
References
J. Kumar, A. Rai and V.A. Raj, Org. Med. Chem. Int. J., 1, 555 (2017).
C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins and A. de Fatima, J. Adv. Res., 2, 1 (2011);https://doi.org/10.1016/j.jare.2010.05.004
A. Kajal, S. Bala, S. Kamboj, N. Sharma and V. Saini, J. Catal., 2013, 893512 (2013);https://doi.org/10.1155/2013/893512
J.Á. Martín-Illán, D. Rodríguez-San-Miguel, C. Franco, I. Imaz, D. Maspoch, J. Puigmartí-Luis and F. Zamora, Chem. Commun., 56, 6704 (2020);https://doi.org/10.1039/D0CC02033H
M. Mandewale, B. Thorat, U. Patil and R. Yamgar, Int. J. Chem. Pharm. Sci., 3, 1919 (2015).
L.K.A. Karem, F.Y. Waddai and N.H. Karam, J. Pharm. Sci. Res., 10, 1912 (2018).
A. Otero, M.-J. Chapela, M. Atanassova, J.M. Vieites and A.G. Cabado, Chem. Res. Toxicol., 24, 1817 (2011);https://doi.org/10.1021/tx200182m
A.R. Katritzky and N. Dennis, Chem. Rev., 89, 827 (1989);https://doi.org/10.1021/cr00094a006
C.J. Doonan, W. Morris, H. Furukawa and O.M. Yaghi, J. Am. Chem. Soc., 131, 9492 (2009);https://doi.org/10.1021/ja903251e
M. Wang, Z. Huang, J. Xu and Y.R. Chi, J. Am. Chem. Soc., 136, 1214 (2014);https://doi.org/10.1021/ja411110f
R.W. Layer, Chem. Rev., 63, 489 (1963);https://doi.org/10.1021/cr60225a003
M.E. Belowich and J.F. Stoddart, Chem. Soc. Rev., 41, 2003 (2012);https://doi.org/10.1039/c2cs15305j
X. Liu and J.-R. Hamon, Coord. Chem. Rev., 389, 94 (2019);https://doi.org/10.1016/j.ccr.2019.03.010
O. Sebastian and A. Thapa, J. Chem. Pharm. Res., 7, 953 (2015).
M.S. More, P.G. Joshi, Y.K. Mishra and P.K. Khanna, Mater Today Chem., 14, 100195 (2019);https://doi.org/10.1016/j.mtchem.2019.100195
A.M. Abu- Dief and I.M.A. Mohamed, Beni Suef Univ. J. Basic Appl. Sci., 4, 119 (2015);https://doi.org/10.1016/j.bjbas.2015.05.004
C.S. Diercks, M.J. Kalmutzki, N.J. Diercks and O.M. Yaghi, ACS Cent. Sci., 4, 1457 (2018);https://doi.org/10.1021/acscentsci.8b00677
A. Xavier and N. Srividhya, IOSR J. Appl. Chem., 7, 6 (2014);https://doi.org/10.9790/5736-071110615
S.A. Dalia and F. Afsan, Int. J. Chem. Studies, 6, 2859 (2018).
H. Schiff, Annalen der Chemie und Pharmacie, 131, 118 (1864);https://doi.org/10.1002/jlac.18641310113
M.B. Smith and J. March, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, Inc.: New York, edn 6, Chap. 16 (2007).
S. Chacko and S. Samanta, Biomed. Pharmacother., 89, 162 (2017);https://doi.org/10.1016/j.biopha.2017.01.108
S.K. Shrivastava, P. Srivastava, T.V.R. Upendra, P.N. Tripathi and S.K. Sinha, Bioorg. Med. Chem., 25, 1471 (2017);https://doi.org/10.1016/j.bmc.2017.01.010
P. Hirunsit, T. Toyao, S.M.A. Hakim Siddiki, K. Shimizu and M. Ehara, ChemPhysChem, 19, 2848 (2018);https://doi.org/10.1002/cphc.201800723
T.K. Achar, A. Bose and P. Mal, Beilstein J. Org. Chem., 13, 1907 (2017);https://doi.org/10.3762/bjoc.13.186
M. Leonardi, M. Villacampa and J.C. Menendez, Chem. Sci., 9, 2042 (2018);https://doi.org/10.1039/C7SC05370C
Y.-H. Cai, R.-F. Peng, S.-J. Chu and S.-J. Chu, Asian J. Chem., 22, 5835 (2010).
S.-J. Li and Y.-H. Cai, Asian J. Chem., 23, 2619 (2011).
M. Ferguson, N. Giri, X. Huang, D. Apperley and S.L. James, Green Chem., 16, 1374 (2014);https://doi.org/10.1039/C3GC42141D
G.T. Tigineh and L.-K. Liu, J. Chin. Chem. Soc., 66, 1729 (2019);https://doi.org/10.1002/jccs.201800486
G.T. Tigineh, Y.-S. Wen and L.-K. Liu, Tetrahedron, 71, 170 (2015);https://doi.org/10.1016/j.tet.2014.10.074
L. Leoni, A. Carletta, L. Fusaro, J. Dubois, N.A. Tumanov, C. Aprile, J. Wouters and A.D. Cort, Molecules, 24, 2314 (2019);https://doi.org/10.3390/molecules24122314
A. Lawal, Int. J. Innov. Res. Dev., 6, 79 (2017).
G.A. Bowmaker, Chem. Commun., 49, 334 (2013);https://doi.org/10.1039/C2CC35694E
G. Yadav and J.V. Mani, Int. J. Sci. Res., 4, 121 (2015).
M.S. Blois, Nature, 181, 1199 (1958);https://doi.org/10.1038/1811199a0
I. Parejo, C. Codina, C. Petrakis and P. Kefalas, J. Pharmacol. Tox. Methods, 44, 507 (2000);https://doi.org/10.1016/S1056-8719(01)00110-1
C.D. Johnson, The Hammett Equation, Cambridge University Press: London and New York (1973).
F.A. Carey and R.J. Sunberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, Kluwer Academic Publishers: New York, edn 4 (2002).
J.B. Ekeley and P.M. Dean, J. Am. Chem. Soc., 34, 161 (1912);https://doi.org/10.1021/ja02203a005
T.V.R.K. Rao and B.N. Das, Asian J. Chem., 11, 231 (1999).
S. Md Al-Nuzal and A. Ha Al-Amery, J. Chem. Pharm. Res., 8, 290 (2016).
J. Parekh, P. Inamdhar, R. Nair, S. Baluja and S. Chanda, J. Serb. Chem. Soc., 70, 1155 (2005);https://doi.org/10.2298/JSC0510155P
L.A. Saghatforoush, R. Khalilnezhad, S. Ershad, S. Ghammamy and M. Hasanzadeh, Asian J. Chem., 21, 6326 (2009).
C. Deng, Z. Lin, M. Yang and B. Xu, Adv. Mater. Res., 201-203, 2550 (2011);https://doi.org/10.4028/www.scientific.net/AMR.201-203.2550
T.M. Florence, Aust. N. Z. J. Ophthalmol., 23, 3 (1995);https://doi.org/10.1111/j.1442-9071.1995.tb01638.x
Z.D. Petrovic, J. Ðorovic, D. Simijonovic, V.P. Petrovic and Z. Markovic, RSC Adv., 5, 24094 (2015);https://doi.org/10.1039/C5RA02134K
C. Sanchez-Moreno, Food Sci. Technol. Int., 8, 121 (2002);https://doi.org/10.1177/1082013202008003770
M.E. Crisan, P. Bourosh, M.E. Maffei, A. Forni, S. Pieraccini, M. Sironi and Y.M. Chumakov, PLoS One, 9, e101892 (2014);https://doi.org/10.1371/journal.pone.0101892