Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Review on Metal-Organic Frameworks: Synthesis and Applications
Corresponding Author(s) : Abhinandan Rana
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
Metal-organic frameworks (MOFs) are inorganic-organic hybrid porous materials that are composed of positively charged metal ions and organic linkers. The metal ions form nodes that connect the arms of the linkers together to form one-, two-, or three-dimensional structures. Due to this void structure, MOFs have an unusually large internal surface area. They have received enormous interest in recent years particularly as newly developed porous materials. They possess a wide range of potential applications like gas storage, catalysis, sensors, drug delivery, adsorption, etc. In present review article, synthetic methods and applications of MOFs have been discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Furukawa, K.E. Cordova, M. O’Keeffe and O.M. Yaghi, Science, 341,1230444 (2013);https://doi.org/10.1126/science.1230444
- N. Stock and S. Biswas, Chem. Rev., 112, 933 (2012);https://doi.org/10.1021/cr200304e
- H. Li, M. Eddaoudi, M. O’Keeffe and O.M. Yaghi, Nature, 402, 276(1999);https://doi.org/10.1038/46248
- G. Ferey, Chem. Soc. Rev., 37, 191 (2008);https://doi.org/10.1039/B618320B
- A. Dhakshinamoorthy, Z. Li and H. Garcia, Chem. Soc. Rev., 47, 8134(2018);https://doi.org/10.1039/C8CS00256H
- S. Kitagawa and R. Matsuda, Coord. Chem. Rev., 251, 2490 (2007);https://doi.org/10.1016/j.ccr.2007.07.009
- S. Kitagawa, R. Kitaura and S.I. Noro, Angew. Chem. Int. Ed., 43,2334 (2004);https://doi.org/10.1002/anie.200300610
- M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe and O.M. Yaghi, Acc. Chem. Res., 34, 319 (2001);https://doi.org/10.1021/ar000034b
- J.L.C. Rowsell and O.M. Yaghi, Micropor. Mesopor. Mater., 73, 3(2004);https://doi.org/10.1016/j.micromeso.2004.03.034
- T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 131, 6312 (2009);https://doi.org/10.1021/ja809352y
- S. Horike, S. Shimomura and S. Kitagawa, Nat. Chem., 1, 695 (2009);https://doi.org/10.1038/nchem.444
- J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T. Nguyen and J.T.Hupp, Chem. Soc. Rev., 38, 1450 (2009);https://doi.org/10.1039/b807080f
- P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-regi,M. Sebban, F. Taulelle and G. Ferey, J. Am. Chem. Soc., 130, 6774 (2008);https://doi.org/10.1021/ja710973k
- A. Rana, S. Kumar Jana, T. Pal, H. Puschmann, E. Zangrando and S.Dalai, J. Solid State Chem., 216, 49 (2014);https://doi.org/10.1016/j.jssc.2014.04.026
- R. Babarao and J. Jiang, J. Phys. Chem. C, 113, 18287 (2009);https://doi.org/10.1021/jp906429s
- P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G.Ferey, R.E. Morris and C. Serre, Chem. Rev., 112, 1232 (2012);https://doi.org/10.1021/cr200256v
- J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana and C.-K.Tsung, ACS Nano, 8, 2812 (2014);https://doi.org/10.1021/nn406590q
- N. Kerbellec, L. Catala, C. Daiguebonne, A. Gloter, O. Stephan, J.-C.Bünzli, O. Guillou and T. Mallah, New J. Chem., 32, 584 (2008);https://doi.org/10.1039/b719146d
- H. Wu, W. Zhou and T. Yildirim, J. Am. Chem. Soc., 131, 4995 (2009);https://doi.org/10.1021/ja900258t
- D. Zacher, O. Shekhah, W. Woll and R.A. Fischer, Chem. Soc. Rev.,38, 1418 (2009);https://doi.org/10.1039/b805038b
- N. Gargiulo, A. Peluso, P. Aprea, Y. Hua, D. Filipovic, D. Caputo and M. Eic, RSC Adv., 4, 49478 (2014);https://doi.org/10.1039/C4RA05905K
- X. Wang, X. Liu, H. Rong, Y. Song, H. Wen and Q. Liu, RSC Adv., 7,29611 (2017);https://doi.org/10.1039/C7RA04374K
- T. Ladrak, S. Smulders, O. Roubeau, S.J. Teat, P. Gamez and J. Reedijk,Eur. J. Inorg. Chem., 2010, 3804 (2010);https://doi.org/10.1002/ejic.201000378
- S. Sangeetha and G. Krishnamurthy, J. Inorg. Organomet. Polym., 30,4782 (2020);https://doi.org/10.1007/s10904-020-01593-8
- T.N. Tu, H.T.T. Nguyen, H.T.D. Nguyen, M.V. Nguyen, T.D. Nguyen, N.T. Tran and K.T. Lim, RSC Adv., 9, 16784 (2019);https://doi.org/10.1039/C9RA03287H
- X. Liu, Y. Zhou, J. Zhang, L. Tang, L. Luo and G. Zeng, ACS Appl.Mater. Interfaces, 9, 20255 (2017); https://doi.org/10.1021/acsami.7b02563
- S. Bommakanti and S.K. Das, Front. Mater., 6, 170 (2019); https://doi.org/10.3389/fmats.2019.00170
- Q. Zha, F. Yuan, G. Qin and Y. Ni, Inorg. Chem., 59, 1295 (2020); https://doi.org/10.1021/acs.inorgchem.9b03011
- S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng and Y. He, J. Mater. Sci., 53,6807 (2018);https://doi.org/10.1007/s10853-018-2005-1
- I. Choi, Y.E. Jung, S.J. Yoo, J.Y. Kim, H.-J. Kim, C.Y. Lee and J.H.Jang, J. Electrochem. Sci. Technol., 8, 61 (2017);https://doi.org/10.33961/JECST.2017.8.1.61
- X. Jiang, B. Yang, Q.-Q. Yang, C.-H. Tung and L.-Z. Wu, Chem.Commun., 54, 4794 (2018); https://doi.org/10.1039/C8CC02359J
- M. Rashidipour, Z. Derikvand, A. Shokrollahi, Z. Mohammadpour and A. Azadbakht, Arab. J. Chem., 10, S3167 (2017); https://doi.org/10.1016/j.arabjc.2013.12.010
- H. Zhang, D. Xu, J. Zhang, J. Liu, K. Yang, Y. Yue, Y. Zhang and L. Yi, J. Inorg. Organomet. Polym., 30, 1412 (2020); https://doi.org/10.1007/s10904-019-01353-3
- Y. Wang, X. Zhang, Y. Zhao, S. Zhang, S. Li, L. Jia, L. Du and Q.Zhao, Molecules, 25, 382 (2020); https://doi.org/10.3390/molecules25020382
- A. Erxleben, Coord. Chem. Rev., 246, 203 (2003); https://doi.org/10.1016/S0010-8545(03)00117-6
- T.A. Maark and S. Pal, Int. J. Hydrogen Energy, 35, 12846 (2010); https://doi.org/10.1016/j.ijhydene.2010.08.054
- Y.K. Lv, C.H. Zhan and Y.L. Feng, CrysEngComm, 12, 3052 (2010); https://doi.org/10.1039/b925546j
- L.M. Yang, P. Vajeeston, P. Ravindran, H. Fjellvag and M. Tilset, Phys.Chem. Chem. Phys., 13, 10191 (2011);https://doi.org/10.1039/c0cp02944k
- A.E. Platero-Prats, M. Iglesias, N. Snejko, A. Monge and E. GutierrezPuebla, Cryst. Growth Des., 11, 1750 (2011);https://doi.org/10.1021/cg200078j
- A.E. Platero Prats, V.A. de la Peña-O’Shea, M. Iglesias, N. Snejko, A.E. Monge and E. Gutiérrez-Puebla, ChemCatChem, 2, 147 (2010); https://doi.org/10.1002/cctc.200900228
- C. Serre and G. Ferey, J. Mater. Chem., 12, 3053 (2002); https://doi.org/10.1039/B203763G
- C. Serre, F. Millange, J. Marrot and G. Ferey, Chem. Mater., 14, 2409(2002); https://doi.org/10.1021/cm0211148
- T.M. Reineke, M. Eddaoudi, M. O’Keeffe and O.M. Yaghi, Angew.Chem. Int. Ed., 38, 2590 (1999);https://doi.org
- F. Serpaggi and G. Ferey, J. Mater. Chem., 8, 2737 (1998);https://doi.org/10.1039/a802713g
- F. Serpaggi and G. Ferey, Micropor. Mesopor. Mater., 32, 311 (1999);https://doi.org/10.1016/S1387-1811(99)00120-1
- C. Dey, T. Kundu, B.P. Biswal, A. Mallick and R. Banerjee, Acta Crystallogr. B, 70, 3 (2014); https://doi.org/10.1107/S2052520613029557
- T.W. Murinzi, E. Hosten and G.M. Watkins, Polyhedron, 137, 188 (2017);https://doi.org/10.1016/j.poly.2017.08.030
- G.I. Dzhardimalieva, R.K. Baimuratova, E.I. Knerelman, G.I. Davydova, S.E. Kudaibergenov, O.V. Kharissova, V.A. Zhinzhilo and I.E. Uflyand, Polymers, 12, 1024 (2020); https://doi.org/10.3390/polym12051024
- F. He, N. Yang, K. Li, X. Wang, S. Cong, L. Zhang, S. Xiong and A.Zhou, J. Mater. Res., 35, 1439 (2020);https://doi.org/10.1557/jmr.2020.93
- M. Ranjbar, M.A. Taher and A. Sam, J. Porous Mater., 23, 375 (2016); https://doi.org/10.1007/s10934-015-0090-y
- Y. Zhang, X. Bo, A. Nsabimana, C. Han, M. Li and L. Guo, J. Mater. Chem. A Mater. Energy Sustain., 3, 732 (2015);https://doi.org/10.1039/C4TA04411H
- L. Shen, W. Wu, R. Liang, R. Lin and L. Wu, Nanoscale, 5, 9374 (2013);https://doi.org/10.1039/c3nr03153e
- Y. Liang, W.-G. Yuan, S.-F. Zhang, Z. He, J. Xue, X. Zhang, L.-H. Jing and D.-B. Qin, Dalton Trans., 45, 1382 (2016);https://doi.org/10.1039/C5DT03658E
- W. Liang and D.M. D’Alessandro, Chem. Commun., 49, 3706 (2013);https://doi.org/10.1039/c3cc40368h
- K. Hindelang, S.I. Vagin, C. Anger and B. Rieger, Chem. Commun., 48, 2888 (2012);https://doi.org/10.1039/c2cc16949e
- Y. Sun and H. Zhou, Sci. Technol. Adv. Mater., 16, 054202 (2015);https://doi.org/10.1088/1468-6996/16/5/054202
- N.A. Khan and S.H. Jhung, Coord. Chem. Rev., 285, 11 (2015);https://doi.org/10.1016/j.ccr.2014.10.008
- G. Zhu, X. Li, H. Wang and L. Zhang, Catal. Commun., 88, 5 (2017);https://doi.org/10.1016/j.catcom.2016.09.024
- W. Zhu, P. Liu, S. Xiao, W. Wang, D. Zhang and H. Li, Appl. Catal. B, 172-173, 46 (2015);https://doi.org/10.1016/j.apcatb.2015.02.003
- C.T. Pereira da Silva, B.N. Safadi, M.P. Moisés, J.G. Meneguin, P.A. Arroyo, S.L. Fávaro, E.M. Girotto, E. Radovanovic and A.W. Rinaldi, Mater. Lett., 182, 231 (2016);https://doi.org/10.1016/j.matlet.2016.06.015
- Y.K. Hwang, J.S. Chang, S.E. Park, D.S. Kim, Y.U. Kwon, S.H. Jhung, J.S. Hwang and M.S. Park, Angew. Chem. Int. Ed., 44, 556 (2005);https://doi.org/10.1002/anie.200461403
- K.M.L. Taylor, W.J. Rieter and W.B. Lin, J. Am. Chem. Soc., 130, 14358 (2008);https://doi.org/10.1021/ja803777x
- Y.S. Bae, K.L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L.J. Broadbelt, J.T. Hupp and R.Q. Snurr, Langmuir, 24, 8592 (2008);https://doi.org/10.1021/la800555x
- U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt and J. Pastré, J. Mater. Chem., 16, 626 (2006);https://doi.org/10.1039/B511962F
- U. Mueller, H. Puetter, M. Hesse and H. Wessel, Method for Electro-chemical Production of a Crystalline Porous Metal Organic Skeleton Material, WO Patent WO/2005/049892 (2005).
- A. Martinez Joaristi, J. Juan-Alcaniz, P. Serra-Crespo, F. Kapteijn and J. Gascon, Cryst. Growth Des., 12, 3489 (2012);https://doi.org/10.1021/cg300552w
- W. Li, J. Lü, S. Gao, Q. Li and R. Cao, J. Mater. Chem. A Mater. Energy Sustain., 2, 19473 (2014);https://doi.org/10.1039/C4TA04203D
- T. Alammar, I.Z. Hlova, S. Gupta, V. Balema, V.K. Pecharsky and A.-V. Mudring, Dalton Trans., 47, 7594 (2018);https://doi.org/10.1039/C7DT04771A
- P.J. Beldon, L. Fabian, R.S. Stein, A. Thirumurugan, A.K. Cheetham and T. Friscic, Angew. Chem. Int. Ed., 49, 9640 (2010);https://doi.org/10.1002/anie.201005547
- Z. Li, L. Qiu, T. Xu, Y. Wu, W. Wang, Z. Wu and X. Jiang, Mater. Lett., 63, 78 (2009);https://doi.org/10.1002/anie.201005547
- M.Y. Masoomi, M. Bagheri and A. Morsali, Ultrason. Sonochem., 33, 54 (2016);https://doi.org/10.1016/j.ultsonch.2016.04.013
- S.A.A. Razavi, M.Y. Masoomi and A. Morsali, Ultrason. Sonochem., 37, 502 (2017);https://doi.org/10.1016/j.ultsonch.2017.02.011
- W.W. Lestari, M. Arvinawati, R. Martien and T. Kusumaningsih, Mater. Chem. Phys., 204, 141 (2018);https://doi.org/10.1016/j.matchemphys.2017.10.034
- S. Ma and H.C. Zhou, Chem. Commun., 46, 44 (2010);https://doi.org/10.1039/B916295J
- A.G. Wong-Foy, A.J. Matzger and O.M. Yaghi, J. Am. Chem. Soc., 128, 3494 (2006);https://doi.org/10.1021/ja058213h
- O.K. Farha, A. Özgür Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.B.T. Nguyen, R.Q. Snurr and J.T. Hupp, Nat. Chem., 2, 944 (2010);https://doi.org/10.1038/nchem.834
- H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim and O.M. Yaghi, Science, 329, 424 (2010);https://doi.org/10.1126/science.1192160
- X. Lin, I. Telepeni, A.J. Blake, A. Dailly, C.M. Brown, J.M. Simmons, M. Zoppi, G.S. Walker, K.M. Thomas, T.J. Mays, P. Hubberstey, N.R. Champness and M. Schroder, J. Am. Chem. Soc., 131, 2159 (2009);https://doi.org/10.1021/ja806624j
- X.-S. Wang, S. Ma, P.M. Forster, D. Yuan, J. Eckert, J.J. Lopez, B.J. Murphy, J.B. Parise and H.-C. Zhou, Angew. Chem., 120, 7373 (2008);https://doi.org/10.1002/ange.200802087
- Z. Hu, B.J. Deibert and J. Li, Chem. Soc. Rev., 43, 5815 (2014);https://doi.org/10.1039/C4CS00010B
- D. Zhao, Y. Cui, Yu. Yang and G. Qian, CrystEngComm, 18, 3746 (2016);https://doi.org/10.1039/C6CE00545D
- D. Ma, B. Li, X. Zhou, Q. Zhou, K. Liu, G. Zeng, G. Li, Z. Shi and S. Feng, Chem. Commun., 49, 8964 (2013);https://doi.org/10.1039/c3cc44546a
- R.F. D’Vries, S. Alvarez-Garcia, N. Snejko, L.E. Bausa, E. Gutierrez-Puebla, A. de Andres and M.A. Monge, J. Mater. Chem. C Mater. Opt. Electron. Devices, 1, 6316 (2013);https://doi.org/10.1039/c3tc30858h
- J. Hagen, Future Development of Catalysis, Industrial Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, p. 463 (2015).
- C. Prestipino, L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P.L. Solari, K.O. Kongshaug and S. Bordiga, Chem. Mater., 18, 1337 (2006);https://doi.org/10.1021/cm052191g
- S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K.Y. Mochizuki, Y. Kinoshita and S. Kitagawa, J. Am. Chem. Soc., 129, 2607 (2007);https://doi.org/10.1021/ja067374y
- Y.K. Hwang, D.Y. Hong, J.S. Chang, H.S. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre and G. Férey, Angew. Chem. Int. Ed., 47, 4144 (2008);https://doi.org/10.1002/anie.200705998
- R.Q. Zou, H. Sakurai and Q. Xu, Angew. Chem. Int. Ed. Engl., 45, 2542 (2006);https://doi.org/10.1002/anie.200503923
- M. Fujita, Y.J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 116, 1151 (1994);https://doi.org/10.1021/ja00082a055
- Y. Lu, M. Tonigold, B. Bredenkotter, D. Volkmer, J. Hitzbleck and G. Langstein, Z. Anorg. Allg. Chem., 634, 2411 (2008);https://doi.org/10.1002/zaac.200800158
- F.X. Llabres i Xamena, O. Casanova, R.G. Tailleur, H. Garcia and A. Corma, J. Catal., 255, 220 (2008);https://doi.org/10.1016/j.jcat.2008.02.011
- A. Pramanik, S. Abbina and G. Das, Polyhedron, 26, 5225 (2007);https://doi.org/10.1016/j.poly.2007.07.033
- D. Jiang, T. Mallat, F. Krumeich and A. Baiker, J. Catal., 257, 390 (2008);https://doi.org/10.1016/j.jcat.2008.05.021
- F. Gandara, B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M.A. Monge, D.M. Proserpio and N. Snejko, Chem. Mater., 20, 72 (2008);https://doi.org/10.1021/cm071079a
- C.D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc., 127, 8940 (2005);https://doi.org/10.1021/ja052431t
- C.M. Miralda, E.E. Macias, M. Zhu, P. Ratnasamy and M.A. Carreon, ACS Catal., 2, 180 (2012);https://doi.org/10.1021/cs200638h
- U. Ravon, M.E. Domine, C. Gaudillere, A. Desmartin-Chomel and D. Farrusseng, New J. Chem., 32, 937 (2008);https://doi.org/10.1039/b803953b
- P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki and G. Férey, Chem. Commun., 2820 (2007);https://doi.org/10.1039/B704325B
- A. Henschel, K. Gedrich, R. Kraehnert and S. Kaskel, Chem. Commun., 4192 (2008);https://doi.org/10.1039/b718371b
- X. Jing, C. He, D. Dong, L. Yang and C. Duan, Angew. Chem. Int. Ed., 51, 10127 (2012);https://doi.org/10.1002/anie.201204530
- F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock and D.E. De Vos, J. Am. Chem. Soc., 135, 11465 (2013);https://doi.org/10.1021/ja405078u
- S. Keskin and S. Kizilel, Ind. Eng. Chem. Res., 50, 1799 (2011);https://doi.org/10.1021/ie101312k
- A.C. McKinlay, R.E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur and C. Serre, Angew. Chem. Int. Ed., 49, 6260 (2010);https://doi.org/10.1002/anie.201000048
- P. Horcajada, C. Serre, M. Vallet-regi, M. Sebban, F. Taulelle and G. Ferey, Angew. Chem. Int. Ed., 45, 5974 (2006);https://doi.org/10.1002/anie.200601878
- K.M.L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran and W. Lin, J. Am. Chem. Soc., 131, 14261 (2009);https://doi.org/10.1021/ja906198y
- F. Ke, Y.P. Yuan, L.G. Qiu, Y.H. Shen, A.J. Xie, J.F. Zhu, X.Y. Tian and L.D. Zhang, J. Mater. Chem., 21, 3843 (2011);https://doi.org/10.1039/c0jm01770a
- G. Xu, P. Nie, H. Dou, B. Ding, L. Li and X. Zhang, Mater. Today, 20, 191 (2017);https://doi.org/10.1016/j.mattod.2016.10.003
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick and J.M. Tarascon, Nat. Mater., 11, 19 (2012);https://doi.org/10.1038/nmat3191
- J.P. Zhu, X.H. Wang and X.X. Zuo, R. Soc. Open Sci., 6, 190634 (2019);https://doi.org/10.1098/rsos.190634
- X. Li, F. Cheng, S. Zhang and J. Chen, J. Power Sources, 160, 542 (2006);https://doi.org/10.1016/j.jpowsour.2006.01.015
- K. Saravanan, M. Nagarathinam, P. Balaya and J.J. Vittal, J. Mater. Chem., 20, 8329 (2010);https://doi.org/10.1039/c0jm01671c
- G. Ferey, F. Millange, N. Morcrette, C. Serre, M.L. Doublet, J.M. Greneche and J.M. Tarascon, Angew. Chem. Int. Ed., 46, 3259 (2007);https://doi.org/10.1002/anie.200605163
- Z. Li, X. Xu, Y. Fu, Y. Guo, Q. Zhang, Q. Zhang and Y. Li, RSC Adv., 9, 620 (2019);https://doi.org/10.1002/anie.200605163
- Y. Wang, X. Wang, X. Wang, X. Zhang, W. Fan, D. Liu, L. Zhang, F. Dai and D. Sun, Cryst. Growth Des., 19, 832 (2019);https://doi.org/10.1021/acs.cgd.8b01403
- J. Liu, X.Y. Zhang, J.X. Hou, J.M. Liu, X. Jing, L.J. Li and J.L. Du, J. Solid State Chem., 270, 697 (2019);https://doi.org/10.1016/j.jssc.2018.12.039
- L. Huelsenbeck, K. Westendorff, Y. Gu, S. Marino, S. Jung, W. Epling and G. Giri, Crystals, 9, 20 (2018);https://doi.org/10.3390/cryst9010020
- N. Li, L. Zhou, X. Jin, G. Owens and Z. Chen, J. Hazard. Mater., 366, 563 (2019);https://doi.org/10.1016/j.jhazmat.2018.12.047
- X. Zeng, F. Chen and D. Cao, J. Hazard. Mater., 366, 624 (2019);https://doi.org/10.1016/j.jhazmat.2018.12.042
- C. Wu, F. Irshad, M. Luo, Y. Zhao, X. Ma and S. Wang, ChemCatChem, 11, 1256 (2019);https://doi.org/10.1002/cctc.201801701
- D. Wang, Z. Liu, L. Xu, C. Li, D. Zhao, G. Ge, Z. Wang and J. Lin, Dalton Trans., 48, 278 (2019);https://doi.org/10.1039/C8DT03826K
- S. Chong, T. Wang, L. Cheng, H. Lv and M. Ji, Langmuir, 35, 495 (2019);https://doi.org/10.1021/acs.langmuir.8b03153
- Y. Liu, F. Zhang, P. Wu, C. Deng, Q. Yang, J. Xue, Y. Shi and J. Wang, Inorg. Chem., 58, 924 (2019);https://doi.org/10.1021/acs.inorgchem.8b03046
- Z. Peng, S.C. Abbas, J. Lv, R. Yang, M. Wu and Y. Wang, Int. J. Hydrogen Energy, 44, 2446 (2019);https://doi.org/10.1016/j.ijhydene.2018.12.064
- C. Cao, D.D. Ma, Q. Xu, X.T. Wu and Q.L. Zhu, Adv. Funct. Mater., 180, 7418 (2018);https://doi.org/10.1002/adfm.201807418
- L. Yan, H. Jiang, Y. Wang, L. Li, X. Gu, P. Dai, D. Liu, S.-F. Tang, G. Zhao, X. Zhao and K.M. Thomas, Electrochim. Acta, 297, 755 (2019);https://doi.org/10.1016/j.electacta.2018.12.020
- J. Baek, B. Rungtaweevoranit, X. Pei, M. Park, S.C. Fakra, Y.-S. Liu, R. Matheu, S.A. Alshmimri, S. Alshehri, C.A. Trickett, G.A. Somorjai and O.M. Yaghi, J. Am. Chem. Soc., 140, 18208 (2018);https://doi.org/10.1021/jacs.8b11525
- J. Sun, X. Zhang, A. Zhang and C. Liao, J. Environ. Sci., 80, 197 (2019);https://doi.org/10.1016/j.jes.2018.12.013
- T. Chowdhury, L. Zhang, J. Zhang and S. Aggarwal, Nanomaterials, 8, 1062 (2018);https://doi.org/10.3390/nano8121062
- W.H. Chen, G.F. Luo, Y.S. Sohn, R. Nechushtai and I. Willner, Adv. Funct. Mater., 29, 1805341 (2019);https://doi.org/10.1002/adfm.201805341
- G. Ji, T. Zheng, X. Gao and Z. Liu, Sens. Actuators B Chem., 284, 91 (2019);https://doi.org/10.1016/j.snb.2018.12.114
- F. Li, Y.S. Hong, K.X. Zuo, Q. Sun and E.Q. Gao, J. Solid State Chem., 270, 509 (2019);https://doi.org/10.1016/j.jssc.2018.12.025
- A. Das, S. Das, V. Trivedi and S. Biswas, Dalton Trans., 48, 1332 (2019);https://doi.org/10.1039/C8DT03964J
- F. Chu, J. Hu, C. Wu, Z. Yao, J. Tian, Z. Li and C. Li, ACS Appl. Mater. Interfaces, 11, 3869 (2019);https://doi.org/10.1021/acsami.8b17924
- X. Yang, P. Zhu, J. Ren, Y. Chen, X. Li, J. Sha and J. Jiang, Chem. Commun., 55, 1201 (2019);https://doi.org/10.1039/C8CC08559E
- A.E. Baumann, D.A. Burns, J.C. Diaz and V.S. Thoi, ACS Appl. Mater. Interfaces, 11, 2159 (2019);https://doi.org/10.1021/acsami.8b19034
- J.P. Rouse, S.D. Garvey, B. Cárdenas and T.R. Davenne, Energy Storage Mater, 20, 1 (2018);https://doi.org/10.1016/j.est.2018.08.006
- N. Ingersoll, Z. Karimi, D. Patel, R. Underwood and R. Warren, Electrochim. Acta, 297, 129 (2019);https://doi.org/10.1016/j.electacta.2018.11.140
- Y. Jiao, W. Hong, P. Li, L. Wang and G. Chen, Appl. Catal. B, 244, 732 (2019);https://doi.org/10.1016/j.apcatb.2018.11.035
- N.K. Mohd Zain, B.L. Vijayan, I.I. Misnon, S. Das, C. Karuppiah, C.-C. Yang, M.M. Yusoff and R. Jose, Ind. Eng. Chem. Res., 58, 665 (2019);https://doi.org/10.1021/acs.iecr.8b03898
- W. Xuan, R. Ramachandran, C. Zhao and F. Wang, 2018 IEEE Inter-national Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Hangzhou, p. 42 (2018);https://doi.org/10.1109/3M-NANO.2018.8552216
- H. Bunzen, A. Javed, D. Klawinski, A. Lamp, M. Grzywa, A. Kalytta-Mewes, M. Tiemann, H.-A.K. von Nidda, T. Wagner and D. Volkmer, ACS Appl. Nano Mater., 2, 291 (2019);https://doi.org/10.1021/acsanm.8b01902
- H. Li, N. Lv, X. Li, B. Liu, J. Feng, X. Ren, T. Guo, D. Chen, J. Fraser Stoddart, R. Gref and J. Zhang, Nanoscale, 9, 7454 (2017);https://doi.org/10.1039/C6NR07593B
- M.H. Teplensky, M. Fantham, P. Li, T.C. Wang, J.P. Mehta, L.J. Young, P.Z. Moghadam, J.T. Hupp, O.K. Farha, C.F. Kaminski and D. Fairen-Jimenez, J. Am. Chem. Soc., 139, 7522 (2017);https://doi.org/10.1021/jacs.7b01451
- Y. Guo, B. Yan, Y. Cheng and L. Mu, J. Coord. Chem., 72, 262 (2019);https://doi.org/10.1080/00958972.2018.1546850
- J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao and Y.-Q. Lan, Chem. Commun., 53, 7804 (2017);https://doi.org/10.1039/C7CC03673F
- E. Kumaran and W.K. Leong, J. Cluster Sci., 30, 1 (2019);https://doi.org/10.1007/s10876-018-1469-0
References
H. Furukawa, K.E. Cordova, M. O’Keeffe and O.M. Yaghi, Science, 341,1230444 (2013);https://doi.org/10.1126/science.1230444
N. Stock and S. Biswas, Chem. Rev., 112, 933 (2012);https://doi.org/10.1021/cr200304e
H. Li, M. Eddaoudi, M. O’Keeffe and O.M. Yaghi, Nature, 402, 276(1999);https://doi.org/10.1038/46248
G. Ferey, Chem. Soc. Rev., 37, 191 (2008);https://doi.org/10.1039/B618320B
A. Dhakshinamoorthy, Z. Li and H. Garcia, Chem. Soc. Rev., 47, 8134(2018);https://doi.org/10.1039/C8CS00256H
S. Kitagawa and R. Matsuda, Coord. Chem. Rev., 251, 2490 (2007);https://doi.org/10.1016/j.ccr.2007.07.009
S. Kitagawa, R. Kitaura and S.I. Noro, Angew. Chem. Int. Ed., 43,2334 (2004);https://doi.org/10.1002/anie.200300610
M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe and O.M. Yaghi, Acc. Chem. Res., 34, 319 (2001);https://doi.org/10.1021/ar000034b
J.L.C. Rowsell and O.M. Yaghi, Micropor. Mesopor. Mater., 73, 3(2004);https://doi.org/10.1016/j.micromeso.2004.03.034
T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 131, 6312 (2009);https://doi.org/10.1021/ja809352y
S. Horike, S. Shimomura and S. Kitagawa, Nat. Chem., 1, 695 (2009);https://doi.org/10.1038/nchem.444
J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T. Nguyen and J.T.Hupp, Chem. Soc. Rev., 38, 1450 (2009);https://doi.org/10.1039/b807080f
P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-regi,M. Sebban, F. Taulelle and G. Ferey, J. Am. Chem. Soc., 130, 6774 (2008);https://doi.org/10.1021/ja710973k
A. Rana, S. Kumar Jana, T. Pal, H. Puschmann, E. Zangrando and S.Dalai, J. Solid State Chem., 216, 49 (2014);https://doi.org/10.1016/j.jssc.2014.04.026
R. Babarao and J. Jiang, J. Phys. Chem. C, 113, 18287 (2009);https://doi.org/10.1021/jp906429s
P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G.Ferey, R.E. Morris and C. Serre, Chem. Rev., 112, 1232 (2012);https://doi.org/10.1021/cr200256v
J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana and C.-K.Tsung, ACS Nano, 8, 2812 (2014);https://doi.org/10.1021/nn406590q
N. Kerbellec, L. Catala, C. Daiguebonne, A. Gloter, O. Stephan, J.-C.Bünzli, O. Guillou and T. Mallah, New J. Chem., 32, 584 (2008);https://doi.org/10.1039/b719146d
H. Wu, W. Zhou and T. Yildirim, J. Am. Chem. Soc., 131, 4995 (2009);https://doi.org/10.1021/ja900258t
D. Zacher, O. Shekhah, W. Woll and R.A. Fischer, Chem. Soc. Rev.,38, 1418 (2009);https://doi.org/10.1039/b805038b
N. Gargiulo, A. Peluso, P. Aprea, Y. Hua, D. Filipovic, D. Caputo and M. Eic, RSC Adv., 4, 49478 (2014);https://doi.org/10.1039/C4RA05905K
X. Wang, X. Liu, H. Rong, Y. Song, H. Wen and Q. Liu, RSC Adv., 7,29611 (2017);https://doi.org/10.1039/C7RA04374K
T. Ladrak, S. Smulders, O. Roubeau, S.J. Teat, P. Gamez and J. Reedijk,Eur. J. Inorg. Chem., 2010, 3804 (2010);https://doi.org/10.1002/ejic.201000378
S. Sangeetha and G. Krishnamurthy, J. Inorg. Organomet. Polym., 30,4782 (2020);https://doi.org/10.1007/s10904-020-01593-8
T.N. Tu, H.T.T. Nguyen, H.T.D. Nguyen, M.V. Nguyen, T.D. Nguyen, N.T. Tran and K.T. Lim, RSC Adv., 9, 16784 (2019);https://doi.org/10.1039/C9RA03287H
X. Liu, Y. Zhou, J. Zhang, L. Tang, L. Luo and G. Zeng, ACS Appl.Mater. Interfaces, 9, 20255 (2017); https://doi.org/10.1021/acsami.7b02563
S. Bommakanti and S.K. Das, Front. Mater., 6, 170 (2019); https://doi.org/10.3389/fmats.2019.00170
Q. Zha, F. Yuan, G. Qin and Y. Ni, Inorg. Chem., 59, 1295 (2020); https://doi.org/10.1021/acs.inorgchem.9b03011
S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng and Y. He, J. Mater. Sci., 53,6807 (2018);https://doi.org/10.1007/s10853-018-2005-1
I. Choi, Y.E. Jung, S.J. Yoo, J.Y. Kim, H.-J. Kim, C.Y. Lee and J.H.Jang, J. Electrochem. Sci. Technol., 8, 61 (2017);https://doi.org/10.33961/JECST.2017.8.1.61
X. Jiang, B. Yang, Q.-Q. Yang, C.-H. Tung and L.-Z. Wu, Chem.Commun., 54, 4794 (2018); https://doi.org/10.1039/C8CC02359J
M. Rashidipour, Z. Derikvand, A. Shokrollahi, Z. Mohammadpour and A. Azadbakht, Arab. J. Chem., 10, S3167 (2017); https://doi.org/10.1016/j.arabjc.2013.12.010
H. Zhang, D. Xu, J. Zhang, J. Liu, K. Yang, Y. Yue, Y. Zhang and L. Yi, J. Inorg. Organomet. Polym., 30, 1412 (2020); https://doi.org/10.1007/s10904-019-01353-3
Y. Wang, X. Zhang, Y. Zhao, S. Zhang, S. Li, L. Jia, L. Du and Q.Zhao, Molecules, 25, 382 (2020); https://doi.org/10.3390/molecules25020382
A. Erxleben, Coord. Chem. Rev., 246, 203 (2003); https://doi.org/10.1016/S0010-8545(03)00117-6
T.A. Maark and S. Pal, Int. J. Hydrogen Energy, 35, 12846 (2010); https://doi.org/10.1016/j.ijhydene.2010.08.054
Y.K. Lv, C.H. Zhan and Y.L. Feng, CrysEngComm, 12, 3052 (2010); https://doi.org/10.1039/b925546j
L.M. Yang, P. Vajeeston, P. Ravindran, H. Fjellvag and M. Tilset, Phys.Chem. Chem. Phys., 13, 10191 (2011);https://doi.org/10.1039/c0cp02944k
A.E. Platero-Prats, M. Iglesias, N. Snejko, A. Monge and E. GutierrezPuebla, Cryst. Growth Des., 11, 1750 (2011);https://doi.org/10.1021/cg200078j
A.E. Platero Prats, V.A. de la Peña-O’Shea, M. Iglesias, N. Snejko, A.E. Monge and E. Gutiérrez-Puebla, ChemCatChem, 2, 147 (2010); https://doi.org/10.1002/cctc.200900228
C. Serre and G. Ferey, J. Mater. Chem., 12, 3053 (2002); https://doi.org/10.1039/B203763G
C. Serre, F. Millange, J. Marrot and G. Ferey, Chem. Mater., 14, 2409(2002); https://doi.org/10.1021/cm0211148
T.M. Reineke, M. Eddaoudi, M. O’Keeffe and O.M. Yaghi, Angew.Chem. Int. Ed., 38, 2590 (1999);https://doi.org
F. Serpaggi and G. Ferey, J. Mater. Chem., 8, 2737 (1998);https://doi.org/10.1039/a802713g
F. Serpaggi and G. Ferey, Micropor. Mesopor. Mater., 32, 311 (1999);https://doi.org/10.1016/S1387-1811(99)00120-1
C. Dey, T. Kundu, B.P. Biswal, A. Mallick and R. Banerjee, Acta Crystallogr. B, 70, 3 (2014); https://doi.org/10.1107/S2052520613029557
T.W. Murinzi, E. Hosten and G.M. Watkins, Polyhedron, 137, 188 (2017);https://doi.org/10.1016/j.poly.2017.08.030
G.I. Dzhardimalieva, R.K. Baimuratova, E.I. Knerelman, G.I. Davydova, S.E. Kudaibergenov, O.V. Kharissova, V.A. Zhinzhilo and I.E. Uflyand, Polymers, 12, 1024 (2020); https://doi.org/10.3390/polym12051024
F. He, N. Yang, K. Li, X. Wang, S. Cong, L. Zhang, S. Xiong and A.Zhou, J. Mater. Res., 35, 1439 (2020);https://doi.org/10.1557/jmr.2020.93
M. Ranjbar, M.A. Taher and A. Sam, J. Porous Mater., 23, 375 (2016); https://doi.org/10.1007/s10934-015-0090-y
Y. Zhang, X. Bo, A. Nsabimana, C. Han, M. Li and L. Guo, J. Mater. Chem. A Mater. Energy Sustain., 3, 732 (2015);https://doi.org/10.1039/C4TA04411H
L. Shen, W. Wu, R. Liang, R. Lin and L. Wu, Nanoscale, 5, 9374 (2013);https://doi.org/10.1039/c3nr03153e
Y. Liang, W.-G. Yuan, S.-F. Zhang, Z. He, J. Xue, X. Zhang, L.-H. Jing and D.-B. Qin, Dalton Trans., 45, 1382 (2016);https://doi.org/10.1039/C5DT03658E
W. Liang and D.M. D’Alessandro, Chem. Commun., 49, 3706 (2013);https://doi.org/10.1039/c3cc40368h
K. Hindelang, S.I. Vagin, C. Anger and B. Rieger, Chem. Commun., 48, 2888 (2012);https://doi.org/10.1039/c2cc16949e
Y. Sun and H. Zhou, Sci. Technol. Adv. Mater., 16, 054202 (2015);https://doi.org/10.1088/1468-6996/16/5/054202
N.A. Khan and S.H. Jhung, Coord. Chem. Rev., 285, 11 (2015);https://doi.org/10.1016/j.ccr.2014.10.008
G. Zhu, X. Li, H. Wang and L. Zhang, Catal. Commun., 88, 5 (2017);https://doi.org/10.1016/j.catcom.2016.09.024
W. Zhu, P. Liu, S. Xiao, W. Wang, D. Zhang and H. Li, Appl. Catal. B, 172-173, 46 (2015);https://doi.org/10.1016/j.apcatb.2015.02.003
C.T. Pereira da Silva, B.N. Safadi, M.P. Moisés, J.G. Meneguin, P.A. Arroyo, S.L. Fávaro, E.M. Girotto, E. Radovanovic and A.W. Rinaldi, Mater. Lett., 182, 231 (2016);https://doi.org/10.1016/j.matlet.2016.06.015
Y.K. Hwang, J.S. Chang, S.E. Park, D.S. Kim, Y.U. Kwon, S.H. Jhung, J.S. Hwang and M.S. Park, Angew. Chem. Int. Ed., 44, 556 (2005);https://doi.org/10.1002/anie.200461403
K.M.L. Taylor, W.J. Rieter and W.B. Lin, J. Am. Chem. Soc., 130, 14358 (2008);https://doi.org/10.1021/ja803777x
Y.S. Bae, K.L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L.J. Broadbelt, J.T. Hupp and R.Q. Snurr, Langmuir, 24, 8592 (2008);https://doi.org/10.1021/la800555x
U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt and J. Pastré, J. Mater. Chem., 16, 626 (2006);https://doi.org/10.1039/B511962F
U. Mueller, H. Puetter, M. Hesse and H. Wessel, Method for Electro-chemical Production of a Crystalline Porous Metal Organic Skeleton Material, WO Patent WO/2005/049892 (2005).
A. Martinez Joaristi, J. Juan-Alcaniz, P. Serra-Crespo, F. Kapteijn and J. Gascon, Cryst. Growth Des., 12, 3489 (2012);https://doi.org/10.1021/cg300552w
W. Li, J. Lü, S. Gao, Q. Li and R. Cao, J. Mater. Chem. A Mater. Energy Sustain., 2, 19473 (2014);https://doi.org/10.1039/C4TA04203D
T. Alammar, I.Z. Hlova, S. Gupta, V. Balema, V.K. Pecharsky and A.-V. Mudring, Dalton Trans., 47, 7594 (2018);https://doi.org/10.1039/C7DT04771A
P.J. Beldon, L. Fabian, R.S. Stein, A. Thirumurugan, A.K. Cheetham and T. Friscic, Angew. Chem. Int. Ed., 49, 9640 (2010);https://doi.org/10.1002/anie.201005547
Z. Li, L. Qiu, T. Xu, Y. Wu, W. Wang, Z. Wu and X. Jiang, Mater. Lett., 63, 78 (2009);https://doi.org/10.1002/anie.201005547
M.Y. Masoomi, M. Bagheri and A. Morsali, Ultrason. Sonochem., 33, 54 (2016);https://doi.org/10.1016/j.ultsonch.2016.04.013
S.A.A. Razavi, M.Y. Masoomi and A. Morsali, Ultrason. Sonochem., 37, 502 (2017);https://doi.org/10.1016/j.ultsonch.2017.02.011
W.W. Lestari, M. Arvinawati, R. Martien and T. Kusumaningsih, Mater. Chem. Phys., 204, 141 (2018);https://doi.org/10.1016/j.matchemphys.2017.10.034
S. Ma and H.C. Zhou, Chem. Commun., 46, 44 (2010);https://doi.org/10.1039/B916295J
A.G. Wong-Foy, A.J. Matzger and O.M. Yaghi, J. Am. Chem. Soc., 128, 3494 (2006);https://doi.org/10.1021/ja058213h
O.K. Farha, A. Özgür Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.B.T. Nguyen, R.Q. Snurr and J.T. Hupp, Nat. Chem., 2, 944 (2010);https://doi.org/10.1038/nchem.834
H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim and O.M. Yaghi, Science, 329, 424 (2010);https://doi.org/10.1126/science.1192160
X. Lin, I. Telepeni, A.J. Blake, A. Dailly, C.M. Brown, J.M. Simmons, M. Zoppi, G.S. Walker, K.M. Thomas, T.J. Mays, P. Hubberstey, N.R. Champness and M. Schroder, J. Am. Chem. Soc., 131, 2159 (2009);https://doi.org/10.1021/ja806624j
X.-S. Wang, S. Ma, P.M. Forster, D. Yuan, J. Eckert, J.J. Lopez, B.J. Murphy, J.B. Parise and H.-C. Zhou, Angew. Chem., 120, 7373 (2008);https://doi.org/10.1002/ange.200802087
Z. Hu, B.J. Deibert and J. Li, Chem. Soc. Rev., 43, 5815 (2014);https://doi.org/10.1039/C4CS00010B
D. Zhao, Y. Cui, Yu. Yang and G. Qian, CrystEngComm, 18, 3746 (2016);https://doi.org/10.1039/C6CE00545D
D. Ma, B. Li, X. Zhou, Q. Zhou, K. Liu, G. Zeng, G. Li, Z. Shi and S. Feng, Chem. Commun., 49, 8964 (2013);https://doi.org/10.1039/c3cc44546a
R.F. D’Vries, S. Alvarez-Garcia, N. Snejko, L.E. Bausa, E. Gutierrez-Puebla, A. de Andres and M.A. Monge, J. Mater. Chem. C Mater. Opt. Electron. Devices, 1, 6316 (2013);https://doi.org/10.1039/c3tc30858h
J. Hagen, Future Development of Catalysis, Industrial Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, p. 463 (2015).
C. Prestipino, L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P.L. Solari, K.O. Kongshaug and S. Bordiga, Chem. Mater., 18, 1337 (2006);https://doi.org/10.1021/cm052191g
S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K.Y. Mochizuki, Y. Kinoshita and S. Kitagawa, J. Am. Chem. Soc., 129, 2607 (2007);https://doi.org/10.1021/ja067374y
Y.K. Hwang, D.Y. Hong, J.S. Chang, H.S. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre and G. Férey, Angew. Chem. Int. Ed., 47, 4144 (2008);https://doi.org/10.1002/anie.200705998
R.Q. Zou, H. Sakurai and Q. Xu, Angew. Chem. Int. Ed. Engl., 45, 2542 (2006);https://doi.org/10.1002/anie.200503923
M. Fujita, Y.J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 116, 1151 (1994);https://doi.org/10.1021/ja00082a055
Y. Lu, M. Tonigold, B. Bredenkotter, D. Volkmer, J. Hitzbleck and G. Langstein, Z. Anorg. Allg. Chem., 634, 2411 (2008);https://doi.org/10.1002/zaac.200800158
F.X. Llabres i Xamena, O. Casanova, R.G. Tailleur, H. Garcia and A. Corma, J. Catal., 255, 220 (2008);https://doi.org/10.1016/j.jcat.2008.02.011
A. Pramanik, S. Abbina and G. Das, Polyhedron, 26, 5225 (2007);https://doi.org/10.1016/j.poly.2007.07.033
D. Jiang, T. Mallat, F. Krumeich and A. Baiker, J. Catal., 257, 390 (2008);https://doi.org/10.1016/j.jcat.2008.05.021
F. Gandara, B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M.A. Monge, D.M. Proserpio and N. Snejko, Chem. Mater., 20, 72 (2008);https://doi.org/10.1021/cm071079a
C.D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc., 127, 8940 (2005);https://doi.org/10.1021/ja052431t
C.M. Miralda, E.E. Macias, M. Zhu, P. Ratnasamy and M.A. Carreon, ACS Catal., 2, 180 (2012);https://doi.org/10.1021/cs200638h
U. Ravon, M.E. Domine, C. Gaudillere, A. Desmartin-Chomel and D. Farrusseng, New J. Chem., 32, 937 (2008);https://doi.org/10.1039/b803953b
P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki and G. Férey, Chem. Commun., 2820 (2007);https://doi.org/10.1039/B704325B
A. Henschel, K. Gedrich, R. Kraehnert and S. Kaskel, Chem. Commun., 4192 (2008);https://doi.org/10.1039/b718371b
X. Jing, C. He, D. Dong, L. Yang and C. Duan, Angew. Chem. Int. Ed., 51, 10127 (2012);https://doi.org/10.1002/anie.201204530
F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock and D.E. De Vos, J. Am. Chem. Soc., 135, 11465 (2013);https://doi.org/10.1021/ja405078u
S. Keskin and S. Kizilel, Ind. Eng. Chem. Res., 50, 1799 (2011);https://doi.org/10.1021/ie101312k
A.C. McKinlay, R.E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur and C. Serre, Angew. Chem. Int. Ed., 49, 6260 (2010);https://doi.org/10.1002/anie.201000048
P. Horcajada, C. Serre, M. Vallet-regi, M. Sebban, F. Taulelle and G. Ferey, Angew. Chem. Int. Ed., 45, 5974 (2006);https://doi.org/10.1002/anie.200601878
K.M.L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran and W. Lin, J. Am. Chem. Soc., 131, 14261 (2009);https://doi.org/10.1021/ja906198y
F. Ke, Y.P. Yuan, L.G. Qiu, Y.H. Shen, A.J. Xie, J.F. Zhu, X.Y. Tian and L.D. Zhang, J. Mater. Chem., 21, 3843 (2011);https://doi.org/10.1039/c0jm01770a
G. Xu, P. Nie, H. Dou, B. Ding, L. Li and X. Zhang, Mater. Today, 20, 191 (2017);https://doi.org/10.1016/j.mattod.2016.10.003
P.G. Bruce, S.A. Freunberger, L.J. Hardwick and J.M. Tarascon, Nat. Mater., 11, 19 (2012);https://doi.org/10.1038/nmat3191
J.P. Zhu, X.H. Wang and X.X. Zuo, R. Soc. Open Sci., 6, 190634 (2019);https://doi.org/10.1098/rsos.190634
X. Li, F. Cheng, S. Zhang and J. Chen, J. Power Sources, 160, 542 (2006);https://doi.org/10.1016/j.jpowsour.2006.01.015
K. Saravanan, M. Nagarathinam, P. Balaya and J.J. Vittal, J. Mater. Chem., 20, 8329 (2010);https://doi.org/10.1039/c0jm01671c
G. Ferey, F. Millange, N. Morcrette, C. Serre, M.L. Doublet, J.M. Greneche and J.M. Tarascon, Angew. Chem. Int. Ed., 46, 3259 (2007);https://doi.org/10.1002/anie.200605163
Z. Li, X. Xu, Y. Fu, Y. Guo, Q. Zhang, Q. Zhang and Y. Li, RSC Adv., 9, 620 (2019);https://doi.org/10.1002/anie.200605163
Y. Wang, X. Wang, X. Wang, X. Zhang, W. Fan, D. Liu, L. Zhang, F. Dai and D. Sun, Cryst. Growth Des., 19, 832 (2019);https://doi.org/10.1021/acs.cgd.8b01403
J. Liu, X.Y. Zhang, J.X. Hou, J.M. Liu, X. Jing, L.J. Li and J.L. Du, J. Solid State Chem., 270, 697 (2019);https://doi.org/10.1016/j.jssc.2018.12.039
L. Huelsenbeck, K. Westendorff, Y. Gu, S. Marino, S. Jung, W. Epling and G. Giri, Crystals, 9, 20 (2018);https://doi.org/10.3390/cryst9010020
N. Li, L. Zhou, X. Jin, G. Owens and Z. Chen, J. Hazard. Mater., 366, 563 (2019);https://doi.org/10.1016/j.jhazmat.2018.12.047
X. Zeng, F. Chen and D. Cao, J. Hazard. Mater., 366, 624 (2019);https://doi.org/10.1016/j.jhazmat.2018.12.042
C. Wu, F. Irshad, M. Luo, Y. Zhao, X. Ma and S. Wang, ChemCatChem, 11, 1256 (2019);https://doi.org/10.1002/cctc.201801701
D. Wang, Z. Liu, L. Xu, C. Li, D. Zhao, G. Ge, Z. Wang and J. Lin, Dalton Trans., 48, 278 (2019);https://doi.org/10.1039/C8DT03826K
S. Chong, T. Wang, L. Cheng, H. Lv and M. Ji, Langmuir, 35, 495 (2019);https://doi.org/10.1021/acs.langmuir.8b03153
Y. Liu, F. Zhang, P. Wu, C. Deng, Q. Yang, J. Xue, Y. Shi and J. Wang, Inorg. Chem., 58, 924 (2019);https://doi.org/10.1021/acs.inorgchem.8b03046
Z. Peng, S.C. Abbas, J. Lv, R. Yang, M. Wu and Y. Wang, Int. J. Hydrogen Energy, 44, 2446 (2019);https://doi.org/10.1016/j.ijhydene.2018.12.064
C. Cao, D.D. Ma, Q. Xu, X.T. Wu and Q.L. Zhu, Adv. Funct. Mater., 180, 7418 (2018);https://doi.org/10.1002/adfm.201807418
L. Yan, H. Jiang, Y. Wang, L. Li, X. Gu, P. Dai, D. Liu, S.-F. Tang, G. Zhao, X. Zhao and K.M. Thomas, Electrochim. Acta, 297, 755 (2019);https://doi.org/10.1016/j.electacta.2018.12.020
J. Baek, B. Rungtaweevoranit, X. Pei, M. Park, S.C. Fakra, Y.-S. Liu, R. Matheu, S.A. Alshmimri, S. Alshehri, C.A. Trickett, G.A. Somorjai and O.M. Yaghi, J. Am. Chem. Soc., 140, 18208 (2018);https://doi.org/10.1021/jacs.8b11525
J. Sun, X. Zhang, A. Zhang and C. Liao, J. Environ. Sci., 80, 197 (2019);https://doi.org/10.1016/j.jes.2018.12.013
T. Chowdhury, L. Zhang, J. Zhang and S. Aggarwal, Nanomaterials, 8, 1062 (2018);https://doi.org/10.3390/nano8121062
W.H. Chen, G.F. Luo, Y.S. Sohn, R. Nechushtai and I. Willner, Adv. Funct. Mater., 29, 1805341 (2019);https://doi.org/10.1002/adfm.201805341
G. Ji, T. Zheng, X. Gao and Z. Liu, Sens. Actuators B Chem., 284, 91 (2019);https://doi.org/10.1016/j.snb.2018.12.114
F. Li, Y.S. Hong, K.X. Zuo, Q. Sun and E.Q. Gao, J. Solid State Chem., 270, 509 (2019);https://doi.org/10.1016/j.jssc.2018.12.025
A. Das, S. Das, V. Trivedi and S. Biswas, Dalton Trans., 48, 1332 (2019);https://doi.org/10.1039/C8DT03964J
F. Chu, J. Hu, C. Wu, Z. Yao, J. Tian, Z. Li and C. Li, ACS Appl. Mater. Interfaces, 11, 3869 (2019);https://doi.org/10.1021/acsami.8b17924
X. Yang, P. Zhu, J. Ren, Y. Chen, X. Li, J. Sha and J. Jiang, Chem. Commun., 55, 1201 (2019);https://doi.org/10.1039/C8CC08559E
A.E. Baumann, D.A. Burns, J.C. Diaz and V.S. Thoi, ACS Appl. Mater. Interfaces, 11, 2159 (2019);https://doi.org/10.1021/acsami.8b19034
J.P. Rouse, S.D. Garvey, B. Cárdenas and T.R. Davenne, Energy Storage Mater, 20, 1 (2018);https://doi.org/10.1016/j.est.2018.08.006
N. Ingersoll, Z. Karimi, D. Patel, R. Underwood and R. Warren, Electrochim. Acta, 297, 129 (2019);https://doi.org/10.1016/j.electacta.2018.11.140
Y. Jiao, W. Hong, P. Li, L. Wang and G. Chen, Appl. Catal. B, 244, 732 (2019);https://doi.org/10.1016/j.apcatb.2018.11.035
N.K. Mohd Zain, B.L. Vijayan, I.I. Misnon, S. Das, C. Karuppiah, C.-C. Yang, M.M. Yusoff and R. Jose, Ind. Eng. Chem. Res., 58, 665 (2019);https://doi.org/10.1021/acs.iecr.8b03898
W. Xuan, R. Ramachandran, C. Zhao and F. Wang, 2018 IEEE Inter-national Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Hangzhou, p. 42 (2018);https://doi.org/10.1109/3M-NANO.2018.8552216
H. Bunzen, A. Javed, D. Klawinski, A. Lamp, M. Grzywa, A. Kalytta-Mewes, M. Tiemann, H.-A.K. von Nidda, T. Wagner and D. Volkmer, ACS Appl. Nano Mater., 2, 291 (2019);https://doi.org/10.1021/acsanm.8b01902
H. Li, N. Lv, X. Li, B. Liu, J. Feng, X. Ren, T. Guo, D. Chen, J. Fraser Stoddart, R. Gref and J. Zhang, Nanoscale, 9, 7454 (2017);https://doi.org/10.1039/C6NR07593B
M.H. Teplensky, M. Fantham, P. Li, T.C. Wang, J.P. Mehta, L.J. Young, P.Z. Moghadam, J.T. Hupp, O.K. Farha, C.F. Kaminski and D. Fairen-Jimenez, J. Am. Chem. Soc., 139, 7522 (2017);https://doi.org/10.1021/jacs.7b01451
Y. Guo, B. Yan, Y. Cheng and L. Mu, J. Coord. Chem., 72, 262 (2019);https://doi.org/10.1080/00958972.2018.1546850
J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao and Y.-Q. Lan, Chem. Commun., 53, 7804 (2017);https://doi.org/10.1039/C7CC03673F
E. Kumaran and W.K. Leong, J. Cluster Sci., 30, 1 (2019);https://doi.org/10.1007/s10876-018-1469-0