Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics and Mechanism of Oxidation of Metformin Hydrochloride by Hexamolybdocobaltate(III) in Acidic Medium
Corresponding Author(s) : K.K. Patil
Asian Journal of Chemistry,
Vol. 33 No. 1 (2021): Vol 33 Issue 1
Abstract
The oxidation of metformin hydrochloride by Anderson-Evans type hexamolybdocobaltate(III) anion was investigated under pseudo-first-order condition in acidic medium at 298 K. The rate of reaction is accelerated by increase in the concentration of H+ ion. The decrease in the reaction rate with increase in the concentration of the oxidant [H6CoMo6O24]3- anion and added molybdate ion kinetically indicate existence of the prior equilibria between various forms of the oxidant. In present study, the oxidant exists in monomers [H6CoMo6O24]3- anion, [H5CoMo5O20]2- anion and dimer [H4Co2Mo10O38]6- forms between the pH 2 and 1. The active oxidant species is [H5CoMo5O20]2- anion. Under experimental conditions, the reaction involves direct electron-transfer from metformin center to oxidant anion generating free radical in rate determining step. The fast hydrolysis of formed free radical in presence of second oxidant molecule leads to formation of carbonyl imino functional group in the oxidation product. The ionic strength and solvent polarity had no significant effect on the rate of reaction. FT-IR spectra of metformin and its oxidation product sample were recorded and analyzed. The FT-IR spectra show the change in frequency of the functional groups of oxidation product than that of the pure MET. The formation of oxidation product was confirmed by high performance liquid chromatography associated with electron impact mass spectroscopy (LC/EI-MS). Thermodynamic parameters are evaluated by temperature variation kinetic data and are in support of the proposed mechanism. The probable mechanism is proposed leading to complicated rate law as a result of involvement of prior equillibria between various forms of the oxidant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. López, J.J. Carbó, C.Bo and J.M. Poblet, Chem. Soc. Rev., 41, 7537
- (2012); https://doi.org/10.1039/C2CS35168D
- C. Galli, P. Gentili, A.S. Nunes Pontes, J.A.F. Gamelas and D.V.
- Evtuguin, New J. Chem., 31, 1461 (2007);https://doi.org/10.1039/b703178e
- J. Wang, D. Han, X. Wang, B. Qi and M. Zhao, Biosens. Bioelectron.,36, 18 (2012);https://doi.org/10.1016/j.bios.2012.03.031
- J.N. Barge and G.S. Gokavi, Orient. J. Chem., 33, 2573 (2017);https://doi.org/10.13005/ojc/330554
- A.L. Nolan, R.C. Burns and G.A. Lawrance, J. Chem. Soc., DaltonTrans., 2629 (1996);https://doi.org/10.1039/dt9960002629
- C. Trautwein, J.-D. Berset, H. Wolschke and K. Kümmerer, Environ.Int., 70, 203 (2014);https://doi.org/10.1016/j.envint.2014.05.008
- R. Perman, K. K. Peruru and C. Gowra Malesian, J. Pharm. Sci., 12,33 (2014).8. E. Aksay, S. Yanturali, B. Bayram, N. Hocaoglu and S. Kiyan, Turk. J.Med. Sci., 37, 173 (2007).
- P. Trouillas, C. Marchetti, D. Bonnefont-Rousselot, R. Lazzaroni, D.Jore, M. Gardès-Albert and F. Collin, Phys. Chem. Chem. Phys., 15,9871 (2013);https://doi.org/10.1039/C3CP50602A
- H. Khouri, F. Collin, D. Bonnefont-Rousselot, A. Legrand, D. Joreand M. Gardes-Albert, Eur. J. Biochem., 271, 4745 (2004);https://doi.org/10.1111/j.1432-1033.2004.04438.x
- S. Hussain, K. Ramdas, S. Takle and V. Mane, Int. J. Emerg. Technol.Adv. Eng., 7, 33 (2017).
- P.R. Rangaraju, T. Venkatesha and R. Ramachandrappa, J. World Pharm.Pharm. Sci., 4, 473 (2014).
- N. Vaz, A.S. Manjunatha and Puttaswamy, Indian J. Chem., 54A, 484(2015).
- P.K. Sathpathy, G.C. Dash and P. Mohanty, Indian J. Chem., 47A, 1199(2008).
- S. Senapati, A.K. Patnaik, S.P. Das and P. Mohanty, Am. Chem. Sci. J.,4, 242 (2014);https://doi.org/10.9734/ACSJ/2014/6880
- B.B. Nagolkar, L.D. Chavan and S. Shankarwar, Der Pharm. Sin., 6,31 (2015).
- B.B. Nagolkar, V.M. Gurame, L.D. Chavan and S.G. Shankarwar, Res.J. Chem. Sci., 6, 29 (2016).
- B.B. Nagolkar, L.D. Chavan, T.K. Chondhekar and S.G. Shankarwar,J. Chem. Chem. Sci., 6, 1 (2016).
- R.N. Salunke, S.N. Zende, D.V. Rupnar, B.D. Ajalkar and J.P. Singh,Sci. Pak Res. J., 3, 1 (2016).
- M. Sanjana, A.K. Patnaik, P. Mohanty and S.K. Badamali, Asian J.Chem., 30, 179 (2018);https://doi.org/10.14233/ajchem.2018.20973
- S.V. Nipane, V.M. Gurame and G.S. Gokavi, Inorg. Chem. Commun.,14, 1102 (2011);https://doi.org/10.1016/j.inoche.2011.03.069
- J.D. Sawant, K.K. Patil and G.S. Gokavi, Transition Met. Chem., 44,153 (2019);https://doi.org/10.1007/s11243-018-0279-4
- B. Goyal, M. Mehrotra, A. Prakash and R. Mehrotra, Indian J. Chem.,40A, 965 (2001).24. J.N. Barge, G.S. Gokavi and R.V. Shejwal, Oxid. Commun., 2, 365(2010).
- J.N. Barge and G.S. Gokavi, Int. J. Chem. Kinet., 48, 106 (2016);https://doi.org/10.1002/kin.20975
- J.D. Sawant, K.K. Patil and G.S. Gokavi, J. Emerg. Tech. Innov. Res.,6, 192 (2019).
- G.F. Petrovick, J. Pharmacol. Ther. Res., 2, 6 (2018).
- G.G. Graham, J. Punt, M. Arora, R.O. Day, M.P. Doogue, J.K. Duong,T.J. Furlong, J.R. Greenfield, L.C. Greenup, C.M. Kirkpatrick, J.E.Ray, P. Timmins and K.M. Williams, Clin. Pharmatokin., 50, 81 (2011);https://doi.org/10.2165/11534750-000000000-00000
- N.R. Sheela, S. Muthu and S.S. Krishnan, Asian J. Chem., 22, 5049(2010).
- V. Renganayaki and S. Srinivasan, Int. J. Pharm. Technol. Res., 3, 1350(2011).
- K. Nomiya, M. Wada, H. Murasaki and M. Miwa, Polyhedron, 6, 1343(1987);https://doi.org/10.1016/S0277-5387(00)80893-1
- M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer: Berlin,New York (1983).
References
X. López, J.J. Carbó, C.Bo and J.M. Poblet, Chem. Soc. Rev., 41, 7537
(2012); https://doi.org/10.1039/C2CS35168D
C. Galli, P. Gentili, A.S. Nunes Pontes, J.A.F. Gamelas and D.V.
Evtuguin, New J. Chem., 31, 1461 (2007);https://doi.org/10.1039/b703178e
J. Wang, D. Han, X. Wang, B. Qi and M. Zhao, Biosens. Bioelectron.,36, 18 (2012);https://doi.org/10.1016/j.bios.2012.03.031
J.N. Barge and G.S. Gokavi, Orient. J. Chem., 33, 2573 (2017);https://doi.org/10.13005/ojc/330554
A.L. Nolan, R.C. Burns and G.A. Lawrance, J. Chem. Soc., DaltonTrans., 2629 (1996);https://doi.org/10.1039/dt9960002629
C. Trautwein, J.-D. Berset, H. Wolschke and K. Kümmerer, Environ.Int., 70, 203 (2014);https://doi.org/10.1016/j.envint.2014.05.008
R. Perman, K. K. Peruru and C. Gowra Malesian, J. Pharm. Sci., 12,33 (2014).8. E. Aksay, S. Yanturali, B. Bayram, N. Hocaoglu and S. Kiyan, Turk. J.Med. Sci., 37, 173 (2007).
P. Trouillas, C. Marchetti, D. Bonnefont-Rousselot, R. Lazzaroni, D.Jore, M. Gardès-Albert and F. Collin, Phys. Chem. Chem. Phys., 15,9871 (2013);https://doi.org/10.1039/C3CP50602A
H. Khouri, F. Collin, D. Bonnefont-Rousselot, A. Legrand, D. Joreand M. Gardes-Albert, Eur. J. Biochem., 271, 4745 (2004);https://doi.org/10.1111/j.1432-1033.2004.04438.x
S. Hussain, K. Ramdas, S. Takle and V. Mane, Int. J. Emerg. Technol.Adv. Eng., 7, 33 (2017).
P.R. Rangaraju, T. Venkatesha and R. Ramachandrappa, J. World Pharm.Pharm. Sci., 4, 473 (2014).
N. Vaz, A.S. Manjunatha and Puttaswamy, Indian J. Chem., 54A, 484(2015).
P.K. Sathpathy, G.C. Dash and P. Mohanty, Indian J. Chem., 47A, 1199(2008).
S. Senapati, A.K. Patnaik, S.P. Das and P. Mohanty, Am. Chem. Sci. J.,4, 242 (2014);https://doi.org/10.9734/ACSJ/2014/6880
B.B. Nagolkar, L.D. Chavan and S. Shankarwar, Der Pharm. Sin., 6,31 (2015).
B.B. Nagolkar, V.M. Gurame, L.D. Chavan and S.G. Shankarwar, Res.J. Chem. Sci., 6, 29 (2016).
B.B. Nagolkar, L.D. Chavan, T.K. Chondhekar and S.G. Shankarwar,J. Chem. Chem. Sci., 6, 1 (2016).
R.N. Salunke, S.N. Zende, D.V. Rupnar, B.D. Ajalkar and J.P. Singh,Sci. Pak Res. J., 3, 1 (2016).
M. Sanjana, A.K. Patnaik, P. Mohanty and S.K. Badamali, Asian J.Chem., 30, 179 (2018);https://doi.org/10.14233/ajchem.2018.20973
S.V. Nipane, V.M. Gurame and G.S. Gokavi, Inorg. Chem. Commun.,14, 1102 (2011);https://doi.org/10.1016/j.inoche.2011.03.069
J.D. Sawant, K.K. Patil and G.S. Gokavi, Transition Met. Chem., 44,153 (2019);https://doi.org/10.1007/s11243-018-0279-4
B. Goyal, M. Mehrotra, A. Prakash and R. Mehrotra, Indian J. Chem.,40A, 965 (2001).24. J.N. Barge, G.S. Gokavi and R.V. Shejwal, Oxid. Commun., 2, 365(2010).
J.N. Barge and G.S. Gokavi, Int. J. Chem. Kinet., 48, 106 (2016);https://doi.org/10.1002/kin.20975
J.D. Sawant, K.K. Patil and G.S. Gokavi, J. Emerg. Tech. Innov. Res.,6, 192 (2019).
G.F. Petrovick, J. Pharmacol. Ther. Res., 2, 6 (2018).
G.G. Graham, J. Punt, M. Arora, R.O. Day, M.P. Doogue, J.K. Duong,T.J. Furlong, J.R. Greenfield, L.C. Greenup, C.M. Kirkpatrick, J.E.Ray, P. Timmins and K.M. Williams, Clin. Pharmatokin., 50, 81 (2011);https://doi.org/10.2165/11534750-000000000-00000
N.R. Sheela, S. Muthu and S.S. Krishnan, Asian J. Chem., 22, 5049(2010).
V. Renganayaki and S. Srinivasan, Int. J. Pharm. Technol. Res., 3, 1350(2011).
K. Nomiya, M. Wada, H. Murasaki and M. Miwa, Polyhedron, 6, 1343(1987);https://doi.org/10.1016/S0277-5387(00)80893-1
M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer: Berlin,New York (1983).