Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalytic Activity of Green Synthesized Silver Nanoparticles on Alkaline Hydrolysis of Crystal Violet Dye
Corresponding Author(s) : R.K. London Singh
Asian Journal of Chemistry,
Vol. 33 No. 12 (2021): Vol 33 Issue 12, 2021
Abstract
Silver nanoparticles (AgNPs) were prepared by employing green chemicals such as gallic acid as reductant and starch as a stabilizer. The maximum absorption peak at 443 nm of the synthesized nanoparticles was observed in UV-visible spectrum. The existence of the fcc structure of silver nanocrystal with intense diffraction peak along (111) plane with a crystallite size of 9.32 ± 1.31 nm was evidenced from XRD studies. Quasi-spherical AgNPs of average diameter 48.42 ± 14 nm, hexagonal AgNPs with mean edge length 31.75 ± 7.29 nm and triangular AgNPs of mean edge length 48.55 ± 11.37 nm were confirmed from the TEM images. FTIR analysis verified that the synthesized AgNPs were stabilized by starch. The AgNPs was used as a catalyst in the alkaline hydrolysis of crystal violet dye. A 2.41 × 10-2 min-1 and 4.49 × 10-2 min-1 were degradation rate constants of crystal violet in the absence and presence of silver nanoparticles, respectively. The results clearly highlighted that the green synthesized silver nanoparticles can be used as catalyst in the degradation of toxic dyes in industrial effluents and environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Lu, X. Qin, H. Li, A.M. Asiri, O. Al-Youbi and X. Sun, Part. Part. Syst. Charact., 30, 67 (2013); https://doi.org/10.1002/ppsc.201200033
- D. Yu and V.W.-W. Yam, J. Am. Chem. Soc., 126, 13200 (2004); https://doi.org/10.1021/ja046037r
- M. Rashid and T. Mandal, J. Phys. Chem. C, 111, 16750 (2007); https://doi.org/10.1021/jp074963x
- G. Guzmán, J. Dille and S. Godet, Nanomed-Nanotechnol., 8, 37 (2012); https://doi.org/10.1016/j.nano.2011.05.007
- V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
- S.M. Lee, K.C. Song and B.S. Lee, Korean J. Chem. Eng., 27, 688 (2010); https://doi.org/10.1007/s11814-010-0067-0
- G.A. Martínez-Castañón, N. Niño-Martínez, F. Martínez-Gutierrez, J.R. Martínez-Mendoza and F. Ruiz, J. Nanopart. Res., 10, 1343 (2008); https://doi.org/10.1007/s11051-008-9428-6
- W.I. Abdel Fattah and G.W. Ali, J. Appl. Biotechnol. Bioeng., 5, 43 (2018); https://doi.org/10.15406/jabb.2018.05.00116
- M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, D. Mubarak Ali, M. Rajesh, R. Arun, G. Kapildev, M. Manickavasagam, N. Thajuddin, K. Premkumar and A. Ganapathi, Colloids Surf. B Biointerfaces, 106, 86 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.027
- M. Morais, V. Machado, F. Dias, C. Palmeira, G. Martins, M. Fonseca, C.S.M. Martins, A.L. Teixeira, J.A.V. Prior and R. Medeiros, Nanomaterials, 11, 256 (2021); https://doi.org/10.3390/nano11020256
- J.E. Hutchison, ACS Nano, 2, 395 (2008); https://doi.org/10.1021/nn800131j
- J.A. Dahl, B.L.S. Maddux and J.E. Hutchison, Rev., 107, 2228 (2007); https://doi.org/10.1021/cr050943k
- M. Shu, F. He, Z. Li, X. Zhu, Y. Ma, Z. Zhou, Z. Yang, F. Gao and M. Zeng, Nanoscale Res. Lett., 15, 14 (2020); https://doi.org/10.1186/s11671-019-3244-z
- Z. Khan, J.I. Hussain, S. Kumar, A.A. Hashmi and M.A. Malik, J. Biomater. Nanobiotechnol., 2, 390 (2011); https://doi.org/10.4236/jbnb.2011.24048
- Z. Yi, X. Li, X. Xu, B. Luo, J. Luo, W. Wu, Y. Yi and Y. Tang, Colloids Surf. A Physicochem. Eng. Asp., 392, 131 (2011); https://doi.org/10.1016/j.colsurfa.2011.09.045
- M. Venkatesham, D. Ayodhya, A. Madhusudhan, N. Veera Babu and G. Veerabhadram, Appl. Nanosci., 4, 113 (2014); https://doi.org/10.1007/s13204-012-0180-y
- S. Srikar, D. Giri, D. Pal, P. Mishra and S. Upadhyay, Green Sustain. Chem., 6, 34 (2016); https://doi.org/10.4236/gsc.2016.61004
- S. Wei, Y. Wang, Z. Tang, J. Hu, R. Su, J. Lin, T. Zhou, H. Guo, N. Wang and R. Xu, New J. Chem., 44, 9304 (2020); https://doi.org/10.1039/D0NJ01335H
- J. Tashkhourian and O. Sheydaei, Anal. Bioanal. Chem. Res., 4, 249 (2017); https://doi.org/10.22036/abcr.2017.69942.1127
- P. Vasileva, T. Alexandrova and I. Karadjova, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/6897960
- K. Praveenkumar, M.K. Rabinal, M.N. Kalasad, T. Sankarappa and M.D. Bedre, IOSR J. Appl. Phys., 5, 43 (2014); https://doi.org/10.9790/4861-0554351
- C.M. Phan and H.M. Nguyen, J. Phys. Chem. A, 121, 3213 (2017); https://doi.org/10.1021/acs.jpca.7b02186
- D. Li, Z. Liu, Y. Yuan, Y. Liu and F. Niu, Process Biochem., 50, 357 (2015); https://doi.org/10.1016/j.procbio.2015.01.002
- A.K. Mittal, S. Kumar and U.C. Banerjee, J. Colloid Interface Sci., 431, 194 (2014); https://doi.org/10.1016/j.jcis.2014.06.030
- S.N. Sunil Gowda, S. Rajasowmiya, V. Vadivel, S.B. Devi, A.C. Jerald, S. Marimuthu and N. Devipriya, Toxicol. Vitr., 52, 170 (2018); https://doi.org/10.1016/j.tiv.2018.06.015
- A. Nezamzadeh-Ejhieh and H. Zabihi-Mobarakeh, J. Ind. Eng. Chem., 20, 1421 (2014); https://doi.org/10.1016/j.jiec.2013.07.027
- P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
- M. Yilmaz, H. Turkdemir, M.A. Kilic, E. Bayram, A. Cicek, A. Mete and B. Ulug, Mater. Chem. Phys., 130, 1195 (2011); https://doi.org/10.1016/j.matchemphys.2011.08.068
- V.S. Kotakadi, S.A. Gaddam, S.K. Venkata and D.V.R. Sai Gopal, Appl. Nanosci., 5, 847 (2015); https://doi.org/10.1007/s13204-014-0381-7
- K. Barman, D. Chowdhury and P.K. Baruah, Inorg. Nano-metal Chem., 50, 57 (2020); https://doi.org/10.1080/24701556.2019.1661468
- T. Devi, N. Ananthi and T. Amaladhas, J. Nanostruc. Chem., 6, 75 (2016); https://doi.org/10.1007/s40097-015-0180-z
- A.I. Patterson, Phys. Rev., 56, 978 (1939); https://doi.org/10.1103/PhysRev.56.978
- K. Jyoti, M. Baunthiyal and A. Singh, J. Radiation Res. Appl. Sci., 9, 217 (2016); https://doi.org/10.1016/j.jrras.2015.10.002
- P. Sibiya, T. Xaba and M. Moloto, Pure Appl. Chem., 88, 61 (2016); https://doi.org/10.1515/pac-2015-0704
- B. Ganapuram, M. Alle, R. Dadigala, A. Dasari, V. Maragoni and V. Guttena, Int. Nano Lett., 5, 215 (2015); https://doi.org/10.1007/s40089-015-0158-3
References
W. Lu, X. Qin, H. Li, A.M. Asiri, O. Al-Youbi and X. Sun, Part. Part. Syst. Charact., 30, 67 (2013); https://doi.org/10.1002/ppsc.201200033
D. Yu and V.W.-W. Yam, J. Am. Chem. Soc., 126, 13200 (2004); https://doi.org/10.1021/ja046037r
M. Rashid and T. Mandal, J. Phys. Chem. C, 111, 16750 (2007); https://doi.org/10.1021/jp074963x
G. Guzmán, J. Dille and S. Godet, Nanomed-Nanotechnol., 8, 37 (2012); https://doi.org/10.1016/j.nano.2011.05.007
V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
S.M. Lee, K.C. Song and B.S. Lee, Korean J. Chem. Eng., 27, 688 (2010); https://doi.org/10.1007/s11814-010-0067-0
G.A. Martínez-Castañón, N. Niño-Martínez, F. Martínez-Gutierrez, J.R. Martínez-Mendoza and F. Ruiz, J. Nanopart. Res., 10, 1343 (2008); https://doi.org/10.1007/s11051-008-9428-6
W.I. Abdel Fattah and G.W. Ali, J. Appl. Biotechnol. Bioeng., 5, 43 (2018); https://doi.org/10.15406/jabb.2018.05.00116
M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, D. Mubarak Ali, M. Rajesh, R. Arun, G. Kapildev, M. Manickavasagam, N. Thajuddin, K. Premkumar and A. Ganapathi, Colloids Surf. B Biointerfaces, 106, 86 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.027
M. Morais, V. Machado, F. Dias, C. Palmeira, G. Martins, M. Fonseca, C.S.M. Martins, A.L. Teixeira, J.A.V. Prior and R. Medeiros, Nanomaterials, 11, 256 (2021); https://doi.org/10.3390/nano11020256
J.E. Hutchison, ACS Nano, 2, 395 (2008); https://doi.org/10.1021/nn800131j
J.A. Dahl, B.L.S. Maddux and J.E. Hutchison, Rev., 107, 2228 (2007); https://doi.org/10.1021/cr050943k
M. Shu, F. He, Z. Li, X. Zhu, Y. Ma, Z. Zhou, Z. Yang, F. Gao and M. Zeng, Nanoscale Res. Lett., 15, 14 (2020); https://doi.org/10.1186/s11671-019-3244-z
Z. Khan, J.I. Hussain, S. Kumar, A.A. Hashmi and M.A. Malik, J. Biomater. Nanobiotechnol., 2, 390 (2011); https://doi.org/10.4236/jbnb.2011.24048
Z. Yi, X. Li, X. Xu, B. Luo, J. Luo, W. Wu, Y. Yi and Y. Tang, Colloids Surf. A Physicochem. Eng. Asp., 392, 131 (2011); https://doi.org/10.1016/j.colsurfa.2011.09.045
M. Venkatesham, D. Ayodhya, A. Madhusudhan, N. Veera Babu and G. Veerabhadram, Appl. Nanosci., 4, 113 (2014); https://doi.org/10.1007/s13204-012-0180-y
S. Srikar, D. Giri, D. Pal, P. Mishra and S. Upadhyay, Green Sustain. Chem., 6, 34 (2016); https://doi.org/10.4236/gsc.2016.61004
S. Wei, Y. Wang, Z. Tang, J. Hu, R. Su, J. Lin, T. Zhou, H. Guo, N. Wang and R. Xu, New J. Chem., 44, 9304 (2020); https://doi.org/10.1039/D0NJ01335H
J. Tashkhourian and O. Sheydaei, Anal. Bioanal. Chem. Res., 4, 249 (2017); https://doi.org/10.22036/abcr.2017.69942.1127
P. Vasileva, T. Alexandrova and I. Karadjova, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/6897960
K. Praveenkumar, M.K. Rabinal, M.N. Kalasad, T. Sankarappa and M.D. Bedre, IOSR J. Appl. Phys., 5, 43 (2014); https://doi.org/10.9790/4861-0554351
C.M. Phan and H.M. Nguyen, J. Phys. Chem. A, 121, 3213 (2017); https://doi.org/10.1021/acs.jpca.7b02186
D. Li, Z. Liu, Y. Yuan, Y. Liu and F. Niu, Process Biochem., 50, 357 (2015); https://doi.org/10.1016/j.procbio.2015.01.002
A.K. Mittal, S. Kumar and U.C. Banerjee, J. Colloid Interface Sci., 431, 194 (2014); https://doi.org/10.1016/j.jcis.2014.06.030
S.N. Sunil Gowda, S. Rajasowmiya, V. Vadivel, S.B. Devi, A.C. Jerald, S. Marimuthu and N. Devipriya, Toxicol. Vitr., 52, 170 (2018); https://doi.org/10.1016/j.tiv.2018.06.015
A. Nezamzadeh-Ejhieh and H. Zabihi-Mobarakeh, J. Ind. Eng. Chem., 20, 1421 (2014); https://doi.org/10.1016/j.jiec.2013.07.027
P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
M. Yilmaz, H. Turkdemir, M.A. Kilic, E. Bayram, A. Cicek, A. Mete and B. Ulug, Mater. Chem. Phys., 130, 1195 (2011); https://doi.org/10.1016/j.matchemphys.2011.08.068
V.S. Kotakadi, S.A. Gaddam, S.K. Venkata and D.V.R. Sai Gopal, Appl. Nanosci., 5, 847 (2015); https://doi.org/10.1007/s13204-014-0381-7
K. Barman, D. Chowdhury and P.K. Baruah, Inorg. Nano-metal Chem., 50, 57 (2020); https://doi.org/10.1080/24701556.2019.1661468
T. Devi, N. Ananthi and T. Amaladhas, J. Nanostruc. Chem., 6, 75 (2016); https://doi.org/10.1007/s40097-015-0180-z
A.I. Patterson, Phys. Rev., 56, 978 (1939); https://doi.org/10.1103/PhysRev.56.978
K. Jyoti, M. Baunthiyal and A. Singh, J. Radiation Res. Appl. Sci., 9, 217 (2016); https://doi.org/10.1016/j.jrras.2015.10.002
P. Sibiya, T. Xaba and M. Moloto, Pure Appl. Chem., 88, 61 (2016); https://doi.org/10.1515/pac-2015-0704
B. Ganapuram, M. Alle, R. Dadigala, A. Dasari, V. Maragoni and V. Guttena, Int. Nano Lett., 5, 215 (2015); https://doi.org/10.1007/s40089-015-0158-3